第8章__测量误差与平差ppt课件.ppt

第8章__测量误差与平差ppt课件.ppt

ID:59398496

大小:392.50 KB

页数:38页

时间:2020-09-19

第8章__测量误差与平差ppt课件.ppt_第1页
第8章__测量误差与平差ppt课件.ppt_第2页
第8章__测量误差与平差ppt课件.ppt_第3页
第8章__测量误差与平差ppt课件.ppt_第4页
第8章__测量误差与平差ppt课件.ppt_第5页
资源描述:

《第8章__测量误差与平差ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第八章测量误差与平差§8-1误差与精度§8-2误差传播定律简介§8-3算术平均值与加权平均值妒衷沫腿松绽旅拷泡涌特抖幂苍废挑官拥使苗冷帕仅品纲堂澎空哄豺吵共第8章__测量误差与平差第8章__测量误差与平差平差——削平差异,消除不符。由于测量仪器的精度不完善和人为因素及外界条件的影响,测量误差总是不可避免的。为了提高成果的质量,处理好这些测量中存在的误差问题,观测值的个数往往要多于确定未知量所必须观测的个数,也就是要进行多余观测。有了多余观测,势必在观测结果之间产生矛盾,测量平差的目的就在于消除这些矛盾而求得观测量的最可靠结果并评定测量成果的精度。测量平差采用的原理是“

2、最小二乘法”。测量平差是德国数学家高斯于1821~1823年在汉诺威弧度测量的三角网平差中首次提出并应用的。以后经过许多科学家的不断完善,得到发展,测量平差已成为测绘学中很重要的、内容丰富的基础理论与数据处理技术之一。咽禾见好抿胎萨牧违璃桩啤捻膳悔糙港猖刷涕弦碌曳淤栏夯昭坚腋中俭丑第8章__测量误差与平差第8章__测量误差与平差测量平差是测绘工程专业的主干课程,一般需要讲授70学时以上。平差分为简易平差和严密平差。严密平差又分为条件平差和间接平差。在高程测量一章中水准路线闭合差的计算与分配实际上就是一种简易平差工作(消除高差不符值)。简易平差的相关内容将结合具体的控制

3、测量计算(如导线计算)加以介绍;对于严密平差方法,有兴趣的同学可自学。本章主要介绍测量误差的基本知识。目的是了解测量误差产生的原因和评定精度的标准;掌握偶然误差的特性、误差传播定律及其在测量数据处理中的应用方法。踏仇茂珊动札鳖幼稠阶狭绞妇争岗蚀妹冉秀桅稚菲悠氖盐瞎肄棵宿砂糕舱第8章__测量误差与平差第8章__测量误差与平差§8-1误差与精度一、测量误差的概念误差是指由各种原因引起的观测值与真实值,或真实值与其应有值之间存在的差异。比如:三角形的内角和为180º,观测值为180º00'30″;标尺刻划间距的真实值为0.97cm,其应有值即理论设计值为1cm。要点:“要测

4、量就会有误差”,即误差与测量同在。误差来源于三个方面:仪器误差、观测误差和外界环境的影响。观测条件与误差的关系。与误差的三个来源相对应的测量仪器、观测者和作业环境叫观测条件。观测条件的好坏决定误差的大小。懒靶蹦喳豁吧哥晰瘪哺汞省责械祷极虫枫颁湾郧离交役澡垣纽构恕遣柒瑶第8章__测量误差与平差第8章__测量误差与平差二.误差的类型测量误差分为系统误差、偶然误差及粗差。系统误差:在相同的观测条件下作多次观测(或对某类数据进行同种处理),如果观测结果包含的误差在大小及符号上表现出一致的倾向,如按一定的函数关系变化,或保持常数,或保持同号,则这种误差叫系统误差。比如:钢尺尺长

5、误差,光电测距中的加常数、剩余常数,传统的“五入”等。偶然误差:在相同的观测条件下作多次观测(或对同类数据进行同种处理),如果观测结果包含的误差在大小及符号上均没有表现出一致的倾向,即从表面看没有任何规律性,则这种误差叫偶然误差。比如:水准读数估读、照准偏左或偏右等。粗差:数值超出了某种规定范围的误差。如读错、记错等。勉泥钢文埠让儿祈涎充亚筋指劝藏液据员语购唐纲保哥搭锯攘抬踞铁仲继第8章__测量误差与平差第8章__测量误差与平差粗差实际上是一种不太容易发现的错误,严格来讲,粗差不应属于测量误差的范畴。三.偶然误差的特性系统误差具有倾向的一致性,即单向性、同一性,其影响

6、具有积累性,对测量成果精度的影响很大,必须设法消除或减小,比如施加尺长改正、加常数改正、剩余常数改正、气象改正等。偶然误差是一种随机性误差,不能直接通过加改正数的方法来消除,在观测结果中总是不可避免地包含偶然误差,因此,偶然误差是测量误差理论的主要研究对象。偶然误差虽然从表面上看没有规律,但实际上具有统计性规律,即特性。下面先给出真误差的定义,然后介绍偶然误差的四个特性。烩瑞卵姬肤劫眷辩悄踏单诉爱啤哨吞滴襄凶水羞韩刨束掏林沙确胞丫旨雷第8章__测量误差与平差第8章__测量误差与平差任何一个被观测量,客观上总存在一个能代表其真正大小的数值,称作“真值”。设某量的真值为X

7、,已剔除了系统误差的观测值为l,则它们的差值叫做该观测值的真误差,简称误差,用△表示,即:△=l-X真误差△仅指偶然误差。如果对某量作一系列的观测,得到n个观测值li(i=1,2,···,n);则有n个真误差△i(i=1,2,···,n)与之相对应。这种仅包含偶然误差的真误差具有以下四个特性:有界性在一定的观测条件下,偶然误差的绝对值不会超过一定的限值。(这个限值不是固定的,与观测条件有关)遏买熬铡酥柑献雌蜜急栋漾佑甜湍酚贯洲峨耘攀缨篆辽咽牙锥俐蚕姿签壕第8章__测量误差与平差第8章__测量误差与平差例如,某项试验中,在相同的观测条件下共观测了358

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。