欢迎来到天天文库
浏览记录
ID:59358313
大小:2.03 MB
页数:31页
时间:2020-09-20
《初中数学湘教版八年级下册1.3 直角三角形全等的判定课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第1章直角三角形1.3直角三角形全等的判定情境引入学习目标1.探索并理解直角三角形全等的判定方法“HL”.(难点)2.会用直角三角形全等的判定方法“HL”判定两个直角三角形全等.(重点)SSSSASASAAAS旧知回顾:我们学过的判定三角形全等的方法如图,Rt△ABC中,∠C=90°,直角边是_____、_____,斜边是______.CBAACBCAB思考:前面学过的四种判定三角形全等的方法,对直角三角形是否适用?ABCA′B′C′1.两个直角三角形中,斜边和一个锐角对应相等,这两个直角三角形全等吗?为什么?2.两个直角三角形中,有一条直角边和一锐角对应相等,这两个直角三角形全等吗?
2、为什么?3.两个直角三角形中,两直角边对应相等,这两个直角三角形全等吗?为什么?口答:动脑想一想我们知道,证明三角形全等不存在SSA定理.ABCDEF如果这两个三角形都是直角三角形,即∠C=∠C'=90°,且AB=A'B',AC=A'C',现在能判定△ABC≌△A'B'C'吗?BCAA'B'C'动脑想一想我们知道,证明三角形全等不存在SSA定理.任意画一个Rt△ABC,使∠C=90°.再画一个Rt△A′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB,把画好的Rt△A′B′C′剪下来,放到Rt△ABC上,它们能重合吗?ABC作图探究直角三角形全等的判定(“斜边、直角边”定理)
3、画图方法视频画图思路(1)先画∠MC′N=90°ABCMC′N画图思路(2)在射线C′M上截取B′C′=BCMC′ABCNB′MC′画图思路(3)以点B′为圆心,AB为半径画弧,交射线C′N于A′MC′ABCNB′A′画图思路(4)连接A′B′MC′ABCNB′A′思考:通过上面的探究,你能得出什么结论?BCAA'B'C'在Rt△ABC和Rt△A'B'C'中∵AB=A'B',AC=A'C',根据勾股定理,BC2=AB2-AC2,B'C'2=A'B'2-A'C'2,∴BC=B'C'.∴Rt△ABC≌Rt△A'B'C'.证明猜想知识要点“斜边、直角边”定理文字语言:斜边和一条直角边对应相等
4、的两个直角三角形全等(简写成“斜边、直角边”或“HL”).几何语言:ABCA′B′C′在Rt△ABC和Rt△A′B′C′中,∴Rt△ABC≌Rt△A′B′C′(HL).“SSA”可以判定两个直角三角形全等,但是“边边”指的是斜边和一直角边,而“角”指的是直角.AB=A′B′,BC=B′C′,判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;()(2)一个锐角和这个角的邻边对应相等;()(3)一个锐角和斜边对应相等;()(4)两直角边对应相等;()(5)一条直角边和斜边对应等.()HLAAS或ASASASAASAAS判一判典
5、例精析例1如图,AC⊥BC,BD⊥AD,AC﹦BD,求证:BC﹦AD.证明:∵AC⊥BC,BD⊥AD,∴∠C与∠D都是直角.AB=BA,AC=BD.在Rt△ABC和Rt△BAD中,∴Rt△ABC≌Rt△BAD(HL).∴BC﹦AD.ABDC应用“HL”的前提条件是在直角三角形中.这是应用“HL”判定方法的书写格式.利用全等证明两条线段相等,这是常见的思路.变式1:如图,∠ACB=∠ADB=90,要证明△ABC≌△BAD,还需一个什么条件?把这些条件都写出来,并在相应的括号内填写出判定它们全等的理由.(1)()(2)()(3)()(4)()ABDCAD=BC∠DAB=∠CBABD=AC∠
6、DBA=∠CABHLHLAASAAS如图,AC、BD相交于点P,AC⊥BC,BD⊥AD,垂足分别为C、D,AD=BC.求证:AC=BD.变式2HLAC=BDRt△ABD≌Rt△BAC如图:AB⊥AD,CD⊥BC,AB=CD,判断AD和BC的位置关系.变式3HL∠ADB=∠CBDRt△ABD≌Rt△CDBAD∥BC例2如图,已知AD,AF分别是两个钝角△ABC和△ABE的高,如果AD=AF,AC=AE.求证:BC=BE.证明:∵AD,AF分别是两个钝角△ABC和△ABE的高,且AD=AF,AC=AE,∴Rt△ADC≌Rt△AFE(HL).∴CD=EF.∵AD=AF,AB=AB,∴Rt△A
7、BD≌Rt△ABF(HL).∴BD=BF.∴BD-CD=BF-EF.即BC=BE.方法总结:证明线段相等可通过证明三角形全等解决,“HL”定理是直角三角形全等独有的判定方法.所以直角三角形全等的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.例3:如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠B和∠F的大小有什么关系?解:在Rt△ABC和Rt△DEF中,BC=EF,AC=DF.∴Rt△
此文档下载收益归作者所有