欢迎来到天天文库
浏览记录
ID:59338140
大小:780.50 KB
页数:42页
时间:2020-09-20
《反比例函数面积和一次函数ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、26.1.2反比例函数的图象和性质第二十六章反比例函数导入新课反比例函数的图象是什么?反比例函数的性质与k有怎样的关系?反比例函数的图象是双曲线当k>0时,两条曲线分别位于第一、三象限,在每个象限内,y随x的增大而减小;当k<0时,两条曲线分别位于第二、四象限,在每个象限内,y随x的增大而增大.复习引入问题1问题2练一练已知反比例函数的图象经过点A(2,3).(1)求这个函数的表达式;解:∵反比例函数的图象经过点A(2,3),∴把点A的坐标代入表达式,得,解得k=6.∴这个函数的表达式为.(2)判断点B(
2、-1,6),C(3,2)是否在这个函数的图象上,并说明理由;解:分别把点B,C的坐标代入反比例函数的解析式,因为点B的坐标不满足该解析式,点C的坐标满足该解析式,所以点B不在该函数的图象上,点C在该函数的图象上.(3)当-30,∴当x<0时,y随x的增大而减小,∴当-33、在反比例函数的图象上分别取点P,Q向x轴、y轴作垂线,围成面积分别为S1,S2的矩形,填写下页表格:合作探究51234-15xyOPS1S2P(2,2)Q(4,1)S1的值S2的值S1与S2的关系猜想S1,S2与k的关系44S1=S2S1=S2=k-5-4-3-21432-3-2-4-5-1QS1的值S2的值S1与S2的关系猜想与k的关系P(-1,4)Q(-2,2)2.若在反比例函数中也用同样的方法分别取P,Q两点,填写表格:44S1=S2S1=S2=-kyxOPQS1S2由前面的探究过程,可以猜想:若点4、P是图象上的任意一点,作PA垂直于x轴,作PB垂直于y轴,矩形AOBP的面积与k的关系是S矩形AOBP=5、k6、.yxOPS我们就k<0的情况给出证明:设点P的坐标为(a,b)AB∵点P(a,b)在函数的图象上,∴,即ab=k.∴S矩形AOBP=PB·PA=-a·b=-ab=-k;若点P在第二象限,则a<0,b>0,若点P在第四象限,则a>0,b<0,∴S矩形AOBP=PB·PA=a·(-b)=-ab=-k.BPA综上,S矩形AOBP=7、k8、.自己尝试证明k>0的情况.点Q是其图象上的任意一点,作QA垂直于9、y轴,作QB垂直于x轴,矩形AOBQ的面积与k的关系是S矩形AOBQ=.推理:△QAO与△QBO的面积和k的关系是S△QAO=S△QBO=.Q对于反比例函数,AB10、k11、yxO归纳:反比例函数的面积不变性A.SA>SB>SCB.SA12、x轴于点C,且△AOC的面积为2,求该反比例函数的表达式.解:设点A的坐标为(xA,yA),∵点A在反比例函数的图象上,∴xA·yA=k,∴S△AOC=·k=2,∴k=4,∴反比例函数的表达式为1.如图,过反比例函数图象上的一点P,作PA⊥x轴于A.若△POA的面积为6,则k=.-12提示:当反比例函数图象在第二、四象限时,注意k<0.yxOPA练一练2.若点P是反比例函数图象上的一点,过点P分别向x轴、y轴作垂线,垂足分别为点M,N,若四边形PMON的面积为3,则这个反比例函数的关系式是.或例4如图,P13、,C是函数(x>0)图像上的任意两点,PA,CD垂直于x轴.设△POA的面积为S1,则S1=;梯形CEAD的面积为S2,则S1与S2的大小关系是S1S2;△POE的面积S3和S2的大小关系是S2S3.2S1S2>=S3如图所示,直线与双曲线交于A,B两点,P是AB上的点,△AOC的面积S1、△BOD的面积S2、△POE的面积S3的大小关系为.S1=S214、S2,S3的大小关系为S1=S2
3、在反比例函数的图象上分别取点P,Q向x轴、y轴作垂线,围成面积分别为S1,S2的矩形,填写下页表格:合作探究51234-15xyOPS1S2P(2,2)Q(4,1)S1的值S2的值S1与S2的关系猜想S1,S2与k的关系44S1=S2S1=S2=k-5-4-3-21432-3-2-4-5-1QS1的值S2的值S1与S2的关系猜想与k的关系P(-1,4)Q(-2,2)2.若在反比例函数中也用同样的方法分别取P,Q两点,填写表格:44S1=S2S1=S2=-kyxOPQS1S2由前面的探究过程,可以猜想:若点
4、P是图象上的任意一点,作PA垂直于x轴,作PB垂直于y轴,矩形AOBP的面积与k的关系是S矩形AOBP=
5、k
6、.yxOPS我们就k<0的情况给出证明:设点P的坐标为(a,b)AB∵点P(a,b)在函数的图象上,∴,即ab=k.∴S矩形AOBP=PB·PA=-a·b=-ab=-k;若点P在第二象限,则a<0,b>0,若点P在第四象限,则a>0,b<0,∴S矩形AOBP=PB·PA=a·(-b)=-ab=-k.BPA综上,S矩形AOBP=
7、k
8、.自己尝试证明k>0的情况.点Q是其图象上的任意一点,作QA垂直于
9、y轴,作QB垂直于x轴,矩形AOBQ的面积与k的关系是S矩形AOBQ=.推理:△QAO与△QBO的面积和k的关系是S△QAO=S△QBO=.Q对于反比例函数,AB
10、k
11、yxO归纳:反比例函数的面积不变性A.SA>SB>SCB.SA12、x轴于点C,且△AOC的面积为2,求该反比例函数的表达式.解:设点A的坐标为(xA,yA),∵点A在反比例函数的图象上,∴xA·yA=k,∴S△AOC=·k=2,∴k=4,∴反比例函数的表达式为1.如图,过反比例函数图象上的一点P,作PA⊥x轴于A.若△POA的面积为6,则k=.-12提示:当反比例函数图象在第二、四象限时,注意k<0.yxOPA练一练2.若点P是反比例函数图象上的一点,过点P分别向x轴、y轴作垂线,垂足分别为点M,N,若四边形PMON的面积为3,则这个反比例函数的关系式是.或例4如图,P13、,C是函数(x>0)图像上的任意两点,PA,CD垂直于x轴.设△POA的面积为S1,则S1=;梯形CEAD的面积为S2,则S1与S2的大小关系是S1S2;△POE的面积S3和S2的大小关系是S2S3.2S1S2>=S3如图所示,直线与双曲线交于A,B两点,P是AB上的点,△AOC的面积S1、△BOD的面积S2、△POE的面积S3的大小关系为.S1=S214、S2,S3的大小关系为S1=S2
12、x轴于点C,且△AOC的面积为2,求该反比例函数的表达式.解:设点A的坐标为(xA,yA),∵点A在反比例函数的图象上,∴xA·yA=k,∴S△AOC=·k=2,∴k=4,∴反比例函数的表达式为1.如图,过反比例函数图象上的一点P,作PA⊥x轴于A.若△POA的面积为6,则k=.-12提示:当反比例函数图象在第二、四象限时,注意k<0.yxOPA练一练2.若点P是反比例函数图象上的一点,过点P分别向x轴、y轴作垂线,垂足分别为点M,N,若四边形PMON的面积为3,则这个反比例函数的关系式是.或例4如图,P
13、,C是函数(x>0)图像上的任意两点,PA,CD垂直于x轴.设△POA的面积为S1,则S1=;梯形CEAD的面积为S2,则S1与S2的大小关系是S1S2;△POE的面积S3和S2的大小关系是S2S3.2S1S2>=S3如图所示,直线与双曲线交于A,B两点,P是AB上的点,△AOC的面积S1、△BOD的面积S2、△POE的面积S3的大小关系为.S1=S214、S2,S3的大小关系为S1=S2
14、S2,S3的大小关系为S1=S2
此文档下载收益归作者所有