欢迎来到天天文库
浏览记录
ID:59327980
大小:199.50 KB
页数:15页
时间:2020-10-31
《北师大版八年级数学下册因式分解导学案】.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第四章 因式分解第一节因式分解(1)计算下列各式:①(m+4)(m-4)=__________;②(y-3)2=__________;③3x(x-1)=__________;④m(a+b+c)=__________;⑤a(a+1)(a-1)=__________.(2)根据上面的算式填空:①3x2-3x=( )( );②m2-16=( )( );③ma+mb+mc=( )( );④y2-6y+9=( )2⑤a3-a=( )( )在(1)中我们知道从左边推右边是整式乘法;那么在(2)中由多项式推出整式乘积的形式是因式分解。因式分
2、解与整式乘法的相互关系——互逆关系。一、因式分解的定义:把一个多项式化成的形式,这种变形叫做把这个多项式。也可以叫做分解因式。定义解析:(1)等式左边必须是(2)分解因式的结果必须是以的形式表示;(3)分解因式必须分解到每个因式都有不能分解为止。二、合作探究探究一:下列从左到右的变形中,哪些是分解因式?哪些不是分解因式?为什么?(1)(2)(3)(4)(5)(6)解:(7)下列从左边到右边的变形,是因式分解的是A、B、C、D、探究二:连一连:9x2-4y2a(a+1)24a2-8ab+4b2-3a(a+2)-3a2-6a4(a-b)2a3+2a
3、2+a(3x+2y)(3x-2y)三、提升训练1.下列各式从左到右的变形是分解因式的是().A.a(a-b)=a2-ab;B.a2-2a+1=a(a-2)+1C.x2-x=x(x-1);D.x2-=(x+)(x-)2.连一连:a2-1(a+1)(a-1)a2+6a+9(3a+1)(3a-1)a2-4a+4a(a-b)9a2-1(a+3)2a2-ab(a-2)2第四章 因式分解第二节提公因式法(一)一、学习重难点重点:能观察出多项式的公因式,并根据分配律把公因式提出来.难点:让学生识别多项式的公因式.1、一个多项式中各项都含有的因式,叫做这个多项
4、式各项的.2、公因式是各项系数的与各项都含有的字母的的积多项式ma+mb+mc都含有的相同因式是,多项式3x2-6xy+x都含有的相同因式是。3、如果一个多项式的各项含有公因式,那么就可以把这个提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做4.提公因式法分解因式与单项式乘以多项式有什么关系?二、合作探究探究一:找出下列多项式的公因式:(1)3x+6(2)7x2-21x(3)8a3b2-12ab3c+abc(4)-24x3-12x2+28x.探究二:分解因式:(1)3x+6;(2)7x2-21x;(3)8a3b2-12ab3c
5、+abc(4)-24x3-12x2+28x.互相交流,总结出找公因式的一般步骤:首先:其次:探究三:用提公因式法分解因式:(1)(2)(3)(4)第四章 因式分解第二节提公因式法(二)学习重难点重点:能观察出公因式是多项式的情况,并能合理地进行分解因式.难点:准确找出公因式,并能正确进行分解因式.一、教材精读:1、一个多项式中各项都含有的因式,叫做这个多项式各项的.(1)–2x2y+4xy2–2xy的公因式:(2)a(x–3)+2b(x–3)的公因式:2、如果一个多项式的各项含有公因式,那么就可以把这个提出来,从而将多项式化成两个因式乘积的形式
6、,这种分解因式的方法叫做二、练习提升探究一:把下列各式分解因式:(1)x(a+b)+y(a+b)(2)3a(x-y)-(x-y)探究二:1.在下列各式等号右边的括号前插入“+”或“–”号,使等式成立:(1)2–a=(a–2)(2)y–x=(x–y)(3)b+a=(a+b)(4)(b–a)2=(a–b)2(5)–m–n=(m+n)(6)–s2+t2=(s2–t2)2.把下列各式分解因式:(1)a(x–y)+b(y–x)(2)2(y-x)2+3(x-y)(3)6(p+q)2-12(q+p)(4)a(m-2)+b(2-m)(5)3(m–n)3–6(n
7、–m)2(6)mn(m-n)-m(n-m)2探究三、能力提升1.分解因式:x(a-b)2n+y(b-a)2n+1=_______________________.第四章 因式分解第二节运用公式法(一)【学习目标】(1)了解运用公式法分解因式的意义;(2)会用平方差公式进行因式分解;(3)了解提公因式法是分解因式,首先考虑方法,再考虑用平方差公式分解因式.(4)在引导学生逆用乘法公式的过程中,发展学生的观察能力培养学生逆向思维的意识,同时让学生了解换元的思想方法.【学习方法】.自主探究与小组合作交流相结合.【学习重难点】重点:让学生掌握运用平方差
8、公式分解因式.难点:将某些单项式化为平方形式,再用平方差公式分解因式;培养学生多步骤分解因式的能力.【学习过程】模块一预习反馈一.学习准备:1.请同学
此文档下载收益归作者所有