资源描述:
《微积分下总结ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、—使方程成为恒等式的函数.通解—解中所含独立的任意常数的个数与方程—确定通解中任意常数的条件.n阶方程的初始条件(或初值条件):的阶数相同.特解引例2引例1通解:特解:微分方程的解—不含任意常数的解,定解条件其图形称为积分曲线.分离变量方程的解法:设y=(x)是方程①的解,两边积分,得①则有恒等式②当G(y)与F(x)可微且G(y)g(y)0时,的隐函数y=(x)是①的解.则有称②为方程①的隐式通解,或通积分.同样,当F(x)=f(x)≠0时,由②确定的隐函数x=(y)也是①的解.设左右两端的原函数分别为G(y),F(x),说明由②确定一、齐次方程形如的
2、方程叫做齐次方程.令代入原方程得两边积分,得积分后再用代替u,便得原方程的通解.解法:分离变量:(h,k为待二、可化为齐次方程的方程作变换原方程化为令,解出h,k(齐次方程)定常数),求出其解后,即得原方程的解.原方程可化为令(可分离变量方程)注:上述方法可适用于下述更一般的方程一、一阶线性微分方程一阶线性微分方程标准形式:若Q(x)0,若Q(x)0,称为非齐次方程.1.解齐次方程分离变量两边积分得故通解为称为齐次方程;对应齐次方程通解齐次方程通解非齐次方程特解2.解非齐次方程用常数变易法:则故原方程的通解即即作变换两端积分得二、伯努利(Bernoulli)方程伯
3、努利方程的标准形式:令求出此方程通解后,除方程两边,得换回原变量即得伯努利方程的通解.解法:(线性方程)伯努利一、令因此即同理可得依次通过n次积分,可得含n个任意常数的通解.型的微分方程型的微分方程设原方程化为一阶方程设其通解为则得再一次积分,得原方程的通解二、三、型的微分方程令故方程化为设其通解为即得分离变量后积分,得原方程的通解内容小结可降阶微分方程的解法——降阶法逐次积分令令定理2.是二阶线性齐次方程的两个线性无关特解,数)是该方程的通解.例如,方程有特解且常数,故方程的通解为(自证)推论.是n阶齐次方程的n个线性无关解,则方程的通解为则三、线性非齐次方程解的结
4、构是二阶非齐次方程的一个特解,Y(x)是相应齐次方程的通解,定理3.则是非齐次方程的通解.证:将代入方程①左端,得②①定理4.分别是方程的特解,是方程的特解.(非齐次方程之解的叠加原理)定理3,定理4均可推广到n阶线性非齐次方程.二阶常系数齐次线性微分方程:和它的导数只差常数因子,代入①得称②为微分方程①的特征方程,1.当时,②有两个相异实根方程有两个线性无关的特解:因此方程的通解为(r为待定常数),①所以令①的解为②则微分其根称为特征根.特征方程2.当时,特征方程有两个相等实根则微分方程有一个特解设另一特解(u(x)待定)代入方程得:是特征方程的重根取u=x,则得因
5、此原方程的通解为特征方程3.当时,特征方程有一对共轭复根这时原方程有两个复数解:利用解的叠加原理,得原方程的线性无关特解:因此原方程的通解为小结:特征方程:实根特征根通解以上结论可推广到高阶常系数线性微分方程.内容小结特征根:(1)当时,通解为(2)当时,通解为(3)当时,通解为可推广到高阶常系数线性齐次方程求通解.二阶常系数线性非齐次微分方程:根据解的结构定理,其通解为非齐次方程特解齐次方程通解求特解的方法根据f(x)的特殊形式,的待定形式,代入原方程比较两端表达式以确定待定系数.①—待定系数法二阶常系数线性非齐次微分方程:根据解的结构定理,其通解为非齐次方程特解齐
6、次方程通解求特解的方法根据f(x)的特殊形式,的待定形式,代入原方程比较两端表达式以确定待定系数.①—待定系数法一、为实数,设特解为其中为待定多项式,代入原方程,得为m次多项式.(1)若不是特征方程的根,则取从而得到特解形式为Q(x)为m次待定系数多项式(2)若是特征方程的单根,为m次多项式,故特解形式为(3)若是特征方程的重根,是m次多项式,故特解形式为小结对方程①,此结论可推广到高阶常系数线性微分方程.即即当是特征方程的k重根时,可设特解内容小结为特征方程的k(=0,1,2)重根,则设特解为为特征方程的k(=0,1)重根,则设特解为3.上述结论也可推广
7、到高阶方程的情形.有3.多元函数的极限4.多元函数的连续性1)函数2)闭域上的多元连续函数的性质:有界定理;最值定理;介值定理3)一切多元初等函数在定义区域内连续P61题2;4;5(3),(5)(画图);8P129题3;*4思考与练习定理:若f(P)在有界闭域D上连续,则*(4)f(P)必在D上一致连续.在D上可取得最大值M及最小值m;(3)对任意(有界性定理)(最值定理)(介值定理)(一致连续性定理)闭域上多元连续函数有与一元函数类似的如下性质:(证明略)一、全微分的定义定义:如果函数z=f(x,y)在定义域D的内点(x,y)可表示成其中A,B不依