资源描述:
《2015年全国高考数学试题分类汇编§82空间几何体的表面积和体积.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、8.2空间几何体的表面积和体积考点一空间几何体的表面积1.(2015课标Ⅰ,11,5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( )A.1B.2C.4D.8答案 B 2.(2015课标Ⅱ,10,5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为( )A.36πB.64πC.144πD.256π答案 C 3.(2015陕西,5,5分)一个几何体的三视图
2、如图所示,则该几何体的表面积为( )A.3πB.4πC.2π+4D.3π+4答案 D 4.(2015福建,9,5分)某几何体的三视图如图所示,则该几何体的表面积等于( )A.8+2B.11+2C.14+2D.15答案 B 考点二空间几何体的体积1.(2015课标Ⅰ,6,5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”
3、已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛答案 B 2.(2015浙江,2,5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A.8cm3B.12cm3C.cm3D.cm3答案 C 3.(2015山东,9,5分)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.B.C.2πD.4π答案 B 9.(2015天津,10,5分)一个几何体的三视图如图所示(单位:m),则该几何体
4、的体积为 m3. 答案 π13.(2015课标Ⅱ,19,12分)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.解析 (1)交线围成的正方形EHGF如图:(2)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EHGF为正方形,所以EH=EF=BC=10.于是
5、MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为.14.(2015安徽,19,13分)如图,三棱锥P-ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥P-ABC的体积;(2)证明:在线段PC上存在点M,使得AC⊥BM,并求的值.解析 (1)由题设AB=1,AC=2,∠BAC=60°,可得S△ABC=·AB·AC·sin60°=.由PA⊥平面ABC,可知PA是三棱锥P-ABC的高,又PA=1,所以三棱锥P-ABC的体积V=·S△ABC·PA=.(
6、2)证明:在平面ABC内,过点B作BN⊥AC,垂足为N.在平面PAC内,过点N作MN∥PA交PC于点M,连结BM.由PA⊥平面ABC知PA⊥AC,所以MN⊥AC.由于BN∩MN=N,故AC⊥平面MBN.又BM⊂平面MBN,所以AC⊥BM.在直角△BAN中,AN=AB·cos∠BAC=,从而NC=AC-AN=.由MN∥PA,得==.