TSP的几种求解方法及其优缺点.doc

TSP的几种求解方法及其优缺点.doc

ID:59252304

大小:184.00 KB

页数:5页

时间:2020-09-08

TSP的几种求解方法及其优缺点.doc_第1页
TSP的几种求解方法及其优缺点.doc_第2页
TSP的几种求解方法及其优缺点.doc_第3页
TSP的几种求解方法及其优缺点.doc_第4页
TSP的几种求解方法及其优缺点.doc_第5页
资源描述:

《TSP的几种求解方法及其优缺点.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、TSP的几种求解方法及其优缺点一、什么是TSP问题旅行商问题,简称TSP,即给定n个城市和两两城市之间的距离,要求确定一条经过各城市当且仅当一次的最短路线。其图论描述为:给定图G=(V,A),其中V为顶点集,A为各顶点相互连接组成的边集,设D=(dij)是由顶点i和顶点j之间的距离所组成的距离矩阵,要求确定一条长度最短的Hamilton回路,即遍历所有顶点当且仅当一次的最短距离。旅行商问题可分为如下两类:1)对称旅行商问题(dij=dji,Πi,j=1,2,3,⋯,n);2)非对称旅行商问题(dij≠dji,ϖi,j=1,2,3,⋯,n)。非对称旅行商问题较难求解,我们一般是

2、探讨对称旅行商问题的求解。若对于城市V={v1,v2,v3,⋯,vn}的一个访问顺序为T={t1,t2,t3,⋯,ti,⋯,tn},其中ti∈V(i=1,2,3,⋯,n),且记tn+1=t1,则旅行商问题的数学模型为:minL=。TSP是一个典型的组合优化问题,并且是一个NP完全难题,是诸多领域内出现的多种复杂问题的集中概括和简化形式,并且已成为各种启发式的搜索、优化算法的间接比较标准。因此,快速、有效地解决TSP有着重要的理论价值和极高的实际应用价值。二、主要求解方法基于TSP的问题特性,构造型算法成为最先开发的求解算法,如最近邻点、最近合并、最近插入、最远插入、最近添加、

3、贪婪插入等。但是,由于构造型算法优化质量较差,迄今为止已开发了许多性能较好的改进型搜索算法,主要有:1)模拟退火算法2)禁忌搜索算法3)Hopfield神经网络优化算法4)蚁群算法5)遗传算法6)混合优化策略2.1 模拟退火算法方法1)编码选择:采用描述TSP解的最常用的一种策略——路径编码。2)SA状态产生函数的设计:对于基于路径编码的SA状态产生函数操作,可将其设计为:①互换操作(SWAP);②逆序操作(INV);③插入操作(INS)。3)SA状态接受函数的设计:min{1,exp(-△/t)}>random[0,1]准则是作为接受新状态的条件最常用的方案,其中△为新旧状

4、态的目标值差,t为”温度”。4)初温和初始状态:最常用且可理解的初温确定方案是,首先随机产生一组状态,确定两两状态间的最大目标值差:

5、Δmax

6、,然后由式t0=-Δmax/lnpr,其中pr为初始接受概率(理论上应接近1,实际设计时也可以取0.1)。初始状态可采用启发式算法(如2opt方法)快速得到一个解,并以此为SA的初始状态。5)退温函数的设计:指数退温函数是最常用的退温策略(tk=λtk-1,λ为退温速率)。6)温度修改准则和算法终止准则的设计:可采用阈值法设计的”温度修改”和”算法终止”两准则。2.2 禁忌搜索算法基于禁忌搜索算法的一般设计原则,对典型的组合优化问题T

7、SP,其算法可以按如下方案实现:1)初始解:可随机产生也可基于问题信息借助一些启发式方法产生以保证一定的初始性能。2)邻域结构:常用方法是互换(SWAP)、插入(INSERT)、逆序(INVERSE)等操作。3)候选解的选择:通常取当前解的邻域解集的一个子集作为候选解集,而取其中的满足藐视准则或非禁忌的最优状态为最佳候选解。4)禁忌表及其长度:建议尝试自适应长度法,譬如根据目标值更新的情况或禁忌频率信息来适当增加或缩短禁忌表长度。5)藐视准则:采用若某个状态的性能优于”bestsofar”状态,则忽视其禁忌属性,直接选取它为当前状态。6)集中搜索和分散搜索策略:分别采用在一定

8、步数的迭代后基于最佳状态进行重新初始化并对其邻域进行多步趋化性搜索和对算法的重新随机初始化或是根据频率信息对一些已知对象进行惩罚。7)终止条件:给定最优状态连续保持不变的最大持续迭代步数。大量研究表明禁忌搜索算法具有模拟退火、遗传算法等智能优化算法相当的性能,甚至更优越。2.3 Hopfield神经网络优化算法在用Hopfield网络求解优化问题之前,必须将问题映射为相应的神经网络。对TSP的求解,首先将问题的合法解映射为一个置换矩阵,并给出相应的能量函数,然后将满足置换矩阵要求的能量函数的最小值与问题的最优解相对应。若以X,Y表示城市,i表示第几次访问,dXY表示城市间的距

9、离,VXi表示矩阵中的第X行第i列的元素,则可构造出能量函数为:这是n×n个神经元状态方程的通用表达式。为求得TSP的优化结果,需要求解n×n个非线性一阶联立微分方程式,以得到置换矩阵中n×n个元素的全部状态。例如可采用如下参数并给定个城市的位置和相互距离求解n个城市的TSP:t=1,A=B=500,C=200,D=500,u0=0.02起始条件为随机噪声,令起始uXi如下式而u00满足在t=0时∑X∑iVXi=n以利于收敛[7]。利用数值计算方法对此微分方程组求解,经若干次迭代即可求得网络各神经元的最

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。