欢迎来到天天文库
浏览记录
ID:59186814
大小:23.50 KB
页数:13页
时间:2020-10-30
《学习高数方法.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、怎样学好高等数学2 学习方法高等数学是理工类、经管类专业的基础课,也是报考工科、管理、经济类硕士研究生的必考科目。不少学生对学习高等数学有畏难情绪,我想以具体知识为例介绍自己的一些经验,实践表明这对于学习高等数学以及线性代数、概率统计、工程数学等大学数学课是有助益的。一、重视基础知识的学习和基本能力的发展高等数学的基础知识是指它所涉及的基本概念、基本理论和基本方法;基本能力则是指在学习知识的同时还要培养和发展学习能力,它包括与数学有关的运算能力、逻辑推理能力和空间想象能力,以及所谓“一般能力”,例如观察、记忆、理解、应用、分析
2、能力等。基础知识是构成数学知识系统的基本框架。人的知识应当是系统而有序地分类储存在大脑中的,这样有利于需要时能迅速地将其搜索到。通常可以围绕一个基本概念、一种基本理论或方法形成一个知识点,而且许多知识点之间又有着内在联系,这些知识点的有机联结最终形成一个科学、合理的知识体系。怎样学好高等数学2 学习方法高等数学是理工类、经管类专业的基础课,也是报考工科、管理、经济类硕士研究生的必考科目。不少学生对学习高等数学有畏难情绪,我想以具体知识为例介绍自己的一些经验,实践表明这对于学习高等数学以及线性代数、概率统计、工程数学等大学数学课
3、是有助益的。一、重视基础知识的学习和基本能力的发展高等数学的基础知识是指它所涉及的基本概念、基本理论和基本方法;基本能力则是指在学习知识的同时还要培养和发展学习能力,它包括与数学有关的运算能力、逻辑推理能力和空间想象能力,以及所谓“一般能力”,例如观察、记忆、理解、应用、分析能力等。基础知识是构成数学知识系统的基本框架。人的知识应当是系统而有序地分类储存在大脑中的,这样有利于需要时能迅速地将其搜索到。通常可以围绕一个基本概念、一种基本理论或方法形成一个知识点,而且许多知识点之间又有着内在联系,这些知识点的有机联结最终形成一个科学
4、、合理的知识体系。怎样学好高等数学2 学习方法高等数学是理工类、经管类专业的基础课,也是报考工科、管理、经济类硕士研究生的必考科目。不少学生对学习高等数学有畏难情绪,我想以具体知识为例介绍自己的一些经验,实践表明这对于学习高等数学以及线性代数、概率统计、工程数学等大学数学课是有助益的。一、重视基础知识的学习和基本能力的发展高等数学的基础知识是指它所涉及的基本概念、基本理论和基本方法;基本能力则是指在学习知识的同时还要培养和发展学习能力,它包括与数学有关的运算能力、逻辑推理能力和空间想象能力,以及所谓“一般能力”,例如观察、记忆
5、、理解、应用、分析能力等。基础知识是构成数学知识系统的基本框架。人的知识应当是系统而有序地分类储存在大脑中的,这样有利于需要时能迅速地将其搜索到。通常可以围绕一个基本概念、一种基本理论或方法形成一个知识点,而且许多知识点之间又有着内在联系,这些知识点的有机联结最终形成一个科学、合理的知识体系。有一种说法:知识分子一生用到的知识中,大学期间所学的不超过20%,其余80%要靠边工作边学习来获得(终身学习的意义即在于此),因此大学期间主要学两样东西:基础知识和学习方法。宽厚的基础知识使你能继续学习,较强的学习能力使你会学习,并且学得更
6、好。二、关于学习高等数学的建议为了便于读者理解,以下陈述均结合高等数学中“数列极限”的内容进行。1、理解基本概念(1)了解概念产生的背景和过程[例1]数列极限概念的背景:古埃及人划分不规则边界的土地问题;银行存款连续复利计算问题;用正多边形逼近圆以计算圆的面积问题等。多了解一些背景知识有利于对概念的理解,能提高学习兴趣,学过之后可以更好地运用它去解决问题。例如理解数列极限概念对学习定积分和无穷级数中有重要意义。(2)掌握概念的本质属性能用自己的话准确地表述一个概念而不是只会背诵定义,是理解概念的重要表现,为此还要从多角度对其进行
7、辨析。[例2]关于数列的极限存在即,判断以下命题的真假:(a)当项数充分大时,数轴上表示数列的点与点的距离可以任意小.(b)若数轴上点的任何邻域外至多只有该数列的有限多个点.(c)若数轴上点的任何邻域内都有该数列的无限多个点.(d)若,则点与点的距离愈来愈近.(e)若,则必须单调地趋向于吗?(f)若,则可以取到吗?(3)清楚概念与相近概念的内在联系和本质区别。通过概念间的比较和联系能加深对概念的理解。[例3]什么情况下可以借助函数的极限计算数列极限?数列极限都能作为函数极限的特例来计算吗?(4)清楚概念的外延。知道哪些对象属于它
8、和哪些不属于它,有利于对概念分类记忆和理解。以数列极限为例,要知道数列极限不存在应如何表述?有几种典型情况——数列是无穷大,或极限不存在也不是无穷大,例如数列等。(5)掌握概念的主要性质。这是由概念的定义直接导出的结论,掌握它们有利于理解概念和解决问题。数列极限
此文档下载收益归作者所有