欢迎来到天天文库
浏览记录
ID:59155843
大小:103.00 KB
页数:5页
时间:2020-09-15
《《步步高学案导学设计》2013-2014学年高中数学人教B版选修2-2利用导数判断函数的单调性.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、§1.3 导数的应用1.3.1 利用导数判断函数的单调性一、基础过关1.命题甲:对任意x∈(a,b),有f′(x)>0;命题乙:f(x)在(a,b)内是单调递增的.则甲是乙的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.函数f(x)=(x-3)ex的单调递增区间是( )A.(-∞,2)B.(0,3)C.(1,4)D.(2,+∞)3.函数f(x)=x3+ax2+bx+c,其中a,b,c为实数,当a2-3b<0时,f(x)是( )A.增函数B.减函数C.常数D.既不是增函数也不是减函数
2、4.下列函数中,在(0,+∞)内为增函数的是( )A.y=sinxB.y=xe2C.y=x3-xD.y=lnx-x5.函数y=f(x)在其定义域内可导,其图象如图所示,记y=f(x)的导函数为y=f′(x),则不等式f′(x)≤0的解集为______________.6.函数y=x-2sinx在(0,2π)内的单调递增区间为______.7.已知函数y=f(x)的导函数f′(x)的图象如图所示,试画出函数y=f(x)的大致图象.二、能力提升8.如果函数f(x)的图象如图,那么导函数y=f′(x)的图象可能是( )9.设
3、f(x),g(x)在[a,b]上可导,且f′(x)>g′(x),则当ag(x)B.f(x)g(x)+f(a)D.f(x)+g(b)>g(x)+f(b)10.函数y=ax3-x在R上是减函数,则a的取值范围为________.11.求下列函数的单调区间:(1)y=x-lnx;(2)y=.12.已知函数f(x)=x3+bx2+cx+d的图象经过点P(0,2),且在点M(-1,f(-1))处的切线方程为6x-y+7=0.(1)求函数y=f(x)的解析式;(2)
4、求函数y=f(x)的单调区间.三、探究与拓展13.已知函数f(x)=mx3+nx2(m、n∈R,m≠0),函数y=f(x)的图象在点(2,f(2))处的切线与x轴平行.(1)用关于m的代数式表示n;(2)求函数f(x)的单调增区间.答案1.A 2.D 3.A 4.B 5.∪[2,3)6.7.解 由y=f′(x)的图象可以得到以下信息:x<-2或x>2时,f′(x)<0,-20,f′(-2)=0,f′(2)=0.故原函数y=f(x)的图象大致如下:8.A 9.C 10.a≤011.解 (1)函数的定义
5、域为(0,+∞),y′=1-,由y′>0,得x>1;由y′<0,得06、x≠0},y′=-,∵当x≠0时,y′=-<0恒成立.∴函数y=的单调减区间为(-∞,0),(0,+∞),没有单调增区间.12.解 (1)由y=f(x)的图象经过点P(0,2),知d=2,∴f(x)=x3+bx2+cx+2,f′(x)=3x2+2bx+c.由在点M(-1,f(-1))处的切线方程为6x-y+7=0,知-6-f(-1)+7=0,即f(-7、1)=1,f′(-1)=6.∴,即解得b=c=-3.故所求的解析式是f(x)=x3-3x2-3x+2.(2)f′(x)=3x2-6x-3.令f′(x)>0,得x<1-或x>1+;令f′(x)<0,得1-0,即8、3mx2-6mx>0,当m>0时,解得x<0或x>2,则函数f(x)的单调增区间是(-∞,0)和(2,+∞);当m<0时,解得00时,函数f(x)的单调增区间是(-∞,0)和(2,+∞);当m<0时,函数f(x)的单调增区间是(0,2).
6、x≠0},y′=-,∵当x≠0时,y′=-<0恒成立.∴函数y=的单调减区间为(-∞,0),(0,+∞),没有单调增区间.12.解 (1)由y=f(x)的图象经过点P(0,2),知d=2,∴f(x)=x3+bx2+cx+2,f′(x)=3x2+2bx+c.由在点M(-1,f(-1))处的切线方程为6x-y+7=0,知-6-f(-1)+7=0,即f(-
7、1)=1,f′(-1)=6.∴,即解得b=c=-3.故所求的解析式是f(x)=x3-3x2-3x+2.(2)f′(x)=3x2-6x-3.令f′(x)>0,得x<1-或x>1+;令f′(x)<0,得1-0,即
8、3mx2-6mx>0,当m>0时,解得x<0或x>2,则函数f(x)的单调增区间是(-∞,0)和(2,+∞);当m<0时,解得00时,函数f(x)的单调增区间是(-∞,0)和(2,+∞);当m<0时,函数f(x)的单调增区间是(0,2).
此文档下载收益归作者所有