山东省日照市2020届高三数学6月校际联合考试试题含解析.doc

山东省日照市2020届高三数学6月校际联合考试试题含解析.doc

ID:58963810

大小:3.25 MB

页数:26页

时间:2020-09-16

山东省日照市2020届高三数学6月校际联合考试试题含解析.doc_第1页
山东省日照市2020届高三数学6月校际联合考试试题含解析.doc_第2页
山东省日照市2020届高三数学6月校际联合考试试题含解析.doc_第3页
山东省日照市2020届高三数学6月校际联合考试试题含解析.doc_第4页
山东省日照市2020届高三数学6月校际联合考试试题含解析.doc_第5页
资源描述:

《山东省日照市2020届高三数学6月校际联合考试试题含解析.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、山东省日照市2020届高三数学6月校际联合考试试题(含解析)考生注意:1.答题前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束,将试题卷和答题卡一并交回.一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则().A.B.C.D.【答案】B【解析】【分析】首先求出集合,然

2、后再利用集合的交运算即可求解.【详解】由集合,,所以.故选:B【点睛】本题考查了集合的交运算、一元二次不等式的解法,属于基础题.2.已知复数为纯虚数(其中i为虚数单位),则实数()A.B.3C.D.【答案】A【解析】【分析】化简复数的代数形式,根据复数为纯虚数,列出方程组,即可求解.【详解】由题意,复数,因为复数为纯虚数,可得,解得.故选:A.【点睛】本题主要考查了复数的除法运算,以及复数的分类及其应用,着重考查计算能力,属于基础题.3.己知,,则下列各式成立的是()A.B.C.D.【答案】C【解析】【分析】根据指数函数和对数函数的单调性和

3、特殊值法,逐一对选项进行判断即可.【详解】解:对于选项:因为函数在上单调递增,所以时,,故选项错误;对于选项:因为在单调递增函数,所以,,故选项正确;对于选项:因为,,可取,,,此时,,所以,故选项错误;对于选项:因为,,可取,,,此时,,所以,故选项错误.故选:C.【点睛】本题主要考查利用对数函数与指数函数的单调性比较大小,属于基础题.4.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中国古代流传下来的两幅神秘图案,蕴含了深奥的宇宙星象之理,被誉为“宇宙魔方”,是中华文化阴阳术数之源.河图的排列结构如图所示,一与六共宗居下,二与七为

4、朋居上,三与八同道居左,四与九为友居右,五与十相守居中,其中白圈为阳数,黑点为阴数,若从阳数和阴数中各取一数,则其差的绝对值为5的概率为()A.B.C.D.【答案】A【解析】【分析】根据阳数为1,3,5,7,9;阴数为2,4,6,8,10,利用古典概型概率求法求解.【详解】∵阳数为1,3,5,7,9;阴数为2,4,6,8,10,∴从阳数和阴数中各取一数的所有组合共有个,满足差的绝对值为5的有,,,,共5个,则其差的绝对值为5的概率为.故选:A.【点睛】本题主要考查古典概型的概率求法,还考查了分析求解问题的能力,属于基础题.5.函数的部分图象

5、大致是()A.B.C.D.【答案】C【解析】【分析】判断函数的性质,和特殊值的正负,以及值域,逐一排除选项.【详解】,函数是奇函数,排除,时,,时,,排除,当时,,时,,排除,符合条件,故选C.【点睛】本题考查了根据函数解析式判断函数图象,属于基础题型,一般根据选项判断函数的奇偶性,零点,特殊值的正负,以及单调性,极值点等排除选项.6.已知函数是定义在上的奇函数,当0时,,则()A.3B.-3C.-2D.-1【答案】B【解析】【分析】由,可求,代入可求,然后结合奇函数的定义得,进而求得的值.【详解】是定义在上的奇函数,且时,,,,,则.故选

6、:B.【点睛】本题考查奇函数性质,即若函数为奇函数且在有定义,则,理解这一知识点是求解本题的关键.7.如图,已知双曲线的左、右焦点分别为、,过右焦点作平行于一条渐近线的直线交双曲线于点,若的内切圆半径为,则双曲线的离心率为()A.B.C.D.【答案】C【解析】【分析】设双曲线的左、右焦点分别为,,设双曲线的一条渐近线方程为,可得直线的方程为,联立双曲线的方程可得的坐标,设,,运用三角形的等积法,以及双曲线的定义,结合锐角三角函数的定义,化简变形可得,的方程,结合离心率公式可得所求值.【详解】设双曲线的左、右焦点分别为,,设双曲线的一条渐近线

7、方程为,可得直线的方程为,与双曲线联立,可得,,设,,由三角形面积的等积法可得,化简可得①由双曲线的定义可得②在三角形中,为直线的倾斜角),由,,可得,可得,③由①②③化简可得,即为,可得,则.故选:C.【点睛】本题考查直线与双曲线的位置关系、双曲线的定义、坐标求解、离心率求解,考查方程思想的运用及三角形等积法,考查运算求解能力,属于难题.8.如图,体积为的大球内有4个小球,每个小球的球面过大球球心且与大球球面有且只有一个交点,4个小球的球心是以大球球心为中心的正方形的4个顶点,为小球相交部分(图中阴影部分)的体积,为大球内、小球外的图中黑

8、色部分的体积,则下列关系中正确的是A.B.C.D.【答案】D【解析】【分析】先设大球半径为,小球半径为,根据题中条件,分别表示出,进而可作差比较大小.【详解】设大球半径为,小球半

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。