《函数的概念(一)》教学设计.doc

《函数的概念(一)》教学设计.doc

ID:58675807

大小:143.00 KB

页数:8页

时间:2020-10-15

《函数的概念(一)》教学设计.doc_第1页
《函数的概念(一)》教学设计.doc_第2页
《函数的概念(一)》教学设计.doc_第3页
《函数的概念(一)》教学设计.doc_第4页
《函数的概念(一)》教学设计.doc_第5页
资源描述:

《《函数的概念(一)》教学设计.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《函数的概念(一)》教学设计一、教材的地位与作用函数是描述客观世界变化规律的重要数学模型。高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言来刻画函数,函数的思想方法将贯穿于高中数学课程的始终。函数的概念是抽象概括出的概念,通过大量的实例,培养学生从“特殊到一般”的综合归纳的能力,培养学生分析问题的能力,引导学生如何发现事物的本质,如何找到问题的突破口来解决问题。二、教学目标分析(一)1、知识与技能:(1)理解函数的概念及其符号表示,能够辨别函数的例证和反例(2)会求简单函数的定义域与值域(3)掌握构成函数的三要素,学会判别两个函数是否相等,理

2、解函数的整体性2、过程与方法:(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)通过函数概念学习的过程,培养学生从“特殊到一般”的分析问题能力以及抽象概括能力3、情感态度与价值观让学生体会现实世界充满变化,感受数学的抽象概括之美。(二)教学重点与难点1、教学重点:函数的概念,构成函数的三要素2、教学难点:函数符号y=f(x)的理解三、学习者特征分析在初中学生已经学习了变量观点下的函数定义;但对涉及函数本质的内容,要求是初步的.从认知能力看,高一学生抽象思维

3、能力相对较弱,要从函数实例中抽象出函数概念还有较大的困难.四、教学策略选择与设计探究引导策略:探讨式学习;教师启发引导自主合作探究式学习策略:建立小组讨论、交流、合作的课堂氛围情景创设策略:运用生活中与教学内容相关的情景,设计问题,设计数学实验,组织教学内容,提出有启发性的引申问题,激发学生的学习兴趣五、教学方法分析1、教法分析:遵循建构主义观点的教学方式,即通过大量实例,按照从“特殊到一般”的认识规律,提出问题,大胆猜想,确定方向分组研究尝试验证,归纳总结,通过搭建新概念与学生原有认识结构间的桥梁,使学生在心理上得到认同,建立新的认识结构。2、学法分析:倡议

4、学生主动观察,积极思考,提出问题,大胆猜测,从而自主归纳小结。在学习中培养自我的从“特殊到一般”的分析问题能力,感受数学的抽象概括之美。六、教学资源与工具设计教师自制的多媒体课件七、教学过程1、复习回顾回顾初中所学函数(如一次函数y=ax+ba≠0等)及函数的概念:(传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说y是x的函数,x叫做自变量);指出用函数可以描述变量之间的依赖关系;强调函数是描述客观世界变化规律的重要数学模型。2、创设情境(1)一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,

5、且炮弹距地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2.(﹡)1>提问:你能得出炮弹飞行5秒、10秒、20秒时距地面多高吗?其中,时间t的变化范围是什么?炮弹距离地面高度h的变化范围是什么?炮弹飞行时间t的变化范围是数集,炮弹距地面的高度h的变化范围是数集2>(可以用几何画板展示)从问题的实际意义可知,对于数集A中的任意一个时间t,按照对应关系(﹡),在数集B中都有唯一确定的高度h和它对应.(2)近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞问题.图1中的曲线显示了南极上空臭氧层空洞的面积从1979~2001年的变化情

6、况.20255101530图12625tSO1979198119831985198719891991199319951997199920011>提问:观察分析图中曲线,时间t的变化范围是多少?臭氧层空洞面积s的变化范围是多少?尝试用集合与对应的语言描述变量之间的依赖关系.根据图中曲线可知,时间t的变化范围是数集,臭氧层空洞面积s的变化范围是数集.2>对于数集A中的任意一个时间t,按照图中曲线,在数集B中都有唯一确定的臭氧层空洞面积S和它对应.(3)国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高.表1中恩格尔系数随时间(年)变化

7、的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.表1-1“八五”计划以来我国城镇居民恩格尔系数变化情况时间(年)19911992199319941995199619971998199920002001城镇居民家庭恩格尔系数(%)53.852.950.149.949.948.646.444.541.939.237.91>提问:恩格尔系数与时间之间的关系是否和前两个实例中的两个变量之间的关系相似?如何用集合与对应的语言来描述这个关系?请仿照(1)(2)描述表中恩格尔系数和时间(年)的关系.2>根据上表,可知时间t的变化范围是数集,恩格尔系数y的

8、变化范围是数集。并且,对于数集A中的任

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。