资源描述:
《高数二第九章:多元函数微分学ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、推广第九章一元函数微分学多元函数微分学注意:善于类比,区别异同多元函数微分法及其应用第八章第一节一、区域二、多元函数的概念三、多元函数的极限四、多元函数的连续性多元函数的基本概念一、区域1.邻域点集称为点P0的邻域.例如,在平面上,(圆邻域)在空间中,(球邻域)说明:若不需要强调邻域半径,也可写成点P0的去心邻域记为在讨论实际问题中也常使用方邻域,平面上的方邻域为。因为方邻域与圆邻域可以互相包含.2.区域(1)内点、外点、边界点设有点集E及一点P:若存在点P的某邻域U(P)E,若存在点P的某邻域U(P)∩E=,若对点P的任一邻域U(P)既含E中的内点也含E则称P为E的内点;
2、则称P为E的外点;则称P为E的边界点.的外点,显然,E的内点必属于E,E的外点必不属于E,E的边界点可能属于E,也可能不属于E.(2)聚点若对任意给定的,点P的去心邻域内总有E中的点,则称P是E的聚点.聚点可以属于E,也可以不属于E(因为聚点可以为所有聚点所成的点集成为E的导集.E的边界点)D(3)开区域及闭区域若点集E的点都是内点,则称E为开集;若点集EE,则称E为闭集;若集D中任意两点都可用一完全属于D的折线相连,开区域连同它的边界一起称为闭区域.则称D是连通的;连通的开集称为开区域,简称区域;。。E的边界点的全体称为E的边界,记作E;例如,在平面上开区域闭区域
3、整个平面点集是开集,是最大的开域,也是最大的闭域;但非区域.o对区域D,若存在正数K,使一切点PD与某定点A的距离APK,则称D为有界域,界域.否则称为无3.n维空间n元有序数组的全体称为n维空间,n维空间中的每一个元素称为空间中的称为该点的第k个坐标.记作即一个点,当所有坐标称该元素为中的零元,记作O.的距离记作中点a的邻域为规定为与零元O的距离为二、多元函数的概念引例:圆柱体的体积定量理想气体的压强三角形面积的海伦公式定义1.设非空点集点集D称为函数的定义域;数集称为函数的值域.特别地,当n=2时,有二元函数当n=3时,有三元函数映射称为定义在D上的n元函
4、数,记作例如,二元函数定义域为圆域说明:二元函数z=f(x,y),(x,y)D图形为中心在原点的上半球面.的图形一般为空间曲面.三元函数定义域为图形为空间中的超曲面.单位闭球三、多元函数的极限定义2.设n元函数点,则称A为函数(也称为n重极限)当n=2时,记二元函数的极限可写作:P0是D的聚若存在常数A,对一记作都有对任意正数,总存在正数,切例1.设求证:证:故总有要证例2.设求证:证:故总有要证若当点趋于不同值或有的极限不存在,解:设P(x,y)沿直线y=kx趋于点(0,0),在点(0,0)的极限.则可以断定函数极限则有k值不同极限不同!在(0,0)点极限不存在.以不同方式趋
5、于不存在.例3.讨论函数函数例4.求解:因而此函数定义域不包括x,y轴则故仅知其中一个存在,推不出其它二者存在.二重极限不同.如果它们都存在,则三者相等.例如,显然与累次极限但由例3知它在(0,0)点二重极限不存在.四、多元函数的连续性定义3.设n元函数定义在D上,如果函数在D上各点处都连续,则称此函数在D上如果存在否则称为不连续,此时称为间断点.则称n元函数连续.连续,例如,函数在点(0,0)极限不存在,又如,函数上间断.故(0,0)为其间断点.在圆周结论:一切多元初等函数在定义区域内连续.例求解这里在区域和区域内都有定义,同时为及的边界点.但无论在内还是在内考虑,下列运算都是正确的
6、:定理:若f(P)在有界闭域D上连续,则*(4)f(P)必在D上一致连续.在D上可取得最大值M及最小值m;(3)对任意(有界性定理)(最值定理)(介值定理)(一致连续性定理)闭域上多元连续函数有与一元函数类似的如下性质:(证明略)解:原式例5.求例6.求函数的连续域.解:例6.证明在全平面连续.证:为初等函数,故连续.又故函数在全平面连续.由夹逼准则得第二节一、偏导数概念及其计算二、高阶偏导数偏导数第八章一、偏导数定义及其计算法引例:研究弦在点x0处的振动速度与加速度,就是中的x固定于求一阶导数与二阶导数.x0处,关于t的将振幅定义1.在点存在,的偏导数,记为的某邻域内则称此极限为函数极
7、限设函数注意:同样可定义对y的偏导数若函数z=f(x,y)在域D内每一点(x,y)处对x则该偏导数称为偏导函数,也简称为偏导数,记为或y偏导数存在,例如,三元函数u=f(x,y,z)在点(x,y,z)处对x的偏导数的概念可以推广到二元以上的函数.偏导数定义为(请自己写出)二元函数偏导数的几何意义:是曲线在点M0处的切线对x轴的斜率.在点M0处的切线斜率.是曲线对y轴的函数在某点各偏导数都存在,显然例如,注意:但在该点不一定连续.在上