欢迎来到天天文库
浏览记录
ID:58638538
大小:350.00 KB
页数:20页
时间:2020-10-17
《2019年全国统一高考数学试卷(文科)以及答案解析(全国1卷).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、绝密★启用前2019年高考普通高等学校招生全国统一考试(全国1卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.(5分)设z=,则
2、z
3、=( )A.2B.C.D.12.(5分)已知集合U={1,2,3,4,5,6,7},A={2,3,4,
4、5},B={2,3,6,7},则B∩∁UA=( )A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}3.(5分)已知a=log20.2,b=20.2,c=0.20.3,则( )A.a<b<cB.a<c<bC.c<a<bD.b<c<a4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是( )A.165cmB.175cmC.1
5、85cmD.190cm5.(5分)函数f(x)=在[﹣π,π]的图象大致为( )A.B.C.D.6.(5分)某学校为了解1000名新生的身体素质,将这些学生编号1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( )A.8号学生B.200号学生C.616号学生D.815号学生7.(5分)tan255°=( )A.﹣2﹣B.﹣2+C.2﹣D.2+8.(5分)已知非零向量,满足
6、
7、=2
8、
9、,且(﹣)⊥,则与的夹角为( )A.B.C.D.9.(5分)如图是求的程序框图,图中空白框中应填入( )A.A=B.A
10、=2+C.A=D.A=1+10.(5分)双曲线C:﹣=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C的离心率为( )A.2sin40°B.2cos40°C.D.11.(5分)△ABC的内角A,B,C的对边分别为a,b,c.已知asinA﹣bsinB=4csinC,cosA=﹣,则=( )A.6B.5C.4D.312.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若
11、AF2
12、=2
13、F2B
14、,
15、AB
16、=
17、BF1
18、,则C的方程为( )A.+y2=1B.+=1C.+=1D.+=1二、填空题:本题共4小题,每小题5分,共20分。13.(
19、5分)曲线y=3(x2+x)ex在点(0,0)处的切线方程为 .14.(5分)记Sn为等比数列{an}的前n项和.若a1=1,S3=,则S4= .15.(5分)函数f(x)=sin(2x+)﹣3cosx的最小值为 .16.(5分)已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为,那么P到平面ABC的距离为 .三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17.(12分)某商场为提高服务质量,随机调查了50名男
20、顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意不满意男顾客4010女顾客3020(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:K2=.P(K2≥k)0.0500.0100.001k3.8416.63510.82818.(12分)记Sn为等差数列{an}的前n项和.已知S9=﹣a5.(1)若a3=4,求{an}的通项公式;(2)若a1>0,求使得Sn≥an的n的取值范围.19.(12分)如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E
21、,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.20.(12分)已知函数f(x)=2sinx﹣xcosx﹣x,f′(x)为f(x)的导数.(1)证明:f′(x)在区间(0,π)存在唯一零点;(2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.21.(12分)已知点A,B关于坐标原点O对称,
22、AB
23、=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上
此文档下载收益归作者所有