欢迎来到天天文库
浏览记录
ID:58620648
大小:976.00 KB
页数:8页
时间:2020-10-17
《函数及函数性质知识点总结.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、函数复习主要知识点二、函数的解析式与定义域函数解析式的七种求法待定系数法:在已知函数解析式的构造时,可用待定系数法。例1设是一次函数,且,求配凑法:已知复合函数的表达式,求的解析式,的表达式容易配成的运算形式时,常用配凑法。但要注意所求函数的定义域不是原复合函数的定义域,而是的值域。例2已知,求的解析式三、换元法:已知复合函数的表达式时,还可以用换元法求的解析式。与配凑法一样,要注意所换元的定义域的变化。例3已知,求四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。例4已知:函数的图象关于点对称,求的解析式五、构造方程组
2、法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。例5设求例6设为偶函数,为奇函数,又试求的解析式六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。例7已知:,对于任意实数x、y,等式恒成立,求七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式。例8设是上的函数,满足,对任意的自然数都有,求1、求函数定义域的主要依据:(1)分式的分母不为零;(
3、2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;6.(05江苏卷)函数的定义域为2求函数定义域的两个难点问题(1)(2)例2设,则的定义域为__________变式练习:,求的定义域。三、函数的值域1求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式
4、;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。主要是含绝对值函数1.(直接法)2.3.(换元法)4.(Δ法)5.6.(分离常数法)①②7.(单调性)8.①,②9.(图象法)10.(对勾函数)11.(几何意义)四.函数的奇偶性1.定义:2.性质:①y=f(x)是偶函数y=f(x)的图象关于轴对称, y=f(x)是奇函数y=f(x)的图象关于原点对称,②若函数f(x)的定义域关于原点对称,则f(0)
5、=0③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]3.奇偶性的判断①看定义域是否关于原点对称 ②看f(x)与f(-x)的关系1已知函数是定义在上的偶函数.当时,,则当时,.2已知定义域为的函数是奇函数。(Ⅰ)求的值;(Ⅱ)若对任意的,不等式恒成立,求的取值范围;3已知在(-1,1)上有定义,且满足证明:在(-1,1)上为奇函数;4若奇函数满足,,则_______五、函数的单调性1、函数单调性的定义:2设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M上是减函数;
6、若f(x)与g(x)的单调性相同,则在M上是增函数。2例函数对任意的,都有,并且当时,,⑴求证:在上是增函数;⑵若,解不等式3函数的单调增区间是________4(高考真题)已知是上的减函数,那么的取值范围是(A)(B)(C)(D)一:函数单调性的证明1.取值2,作差3,定号4,结论二:函数单调性的判定,求单调区间()()三:函数单调性的应用1.比较大小例:如果函数对任意实数都有,那么A、B、C、C、2.解不等式例:定义在(-1,1)上的函数是减函数,且满足:,求实数的取值范围。例:设是定义在上的增函数,,且,求满足不等式的x的取值范围.3
7、.取值范围例: 函数在上是减函数,则的取值范围是_______.例:若是上的减函数,那么的取值范围是()A.B.C.D.4.二次函数最值例:探究函数在区间的最大值和最小值。例:探究函数在区间的最大值和最小值。5.抽象函数单调性判断例:已知函数的定义域是,当时,,且⑴求,⑵证明在定义域上是增函数⑶如果,求满足不等式≥2的的取值范围例:已知函数f(x)对于任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-.(1)求证:f(x)在R上是减函数;(2)求f(x)在[-3,3]上的最大值和最小值.例:已知定
8、义在区间(0,+∞)上的函数f(x)满足f()=f(x1)-f(x2),且当x>1时,f(x)<0.(1)求f(1)的值;(2)判断f(x)的单调性;(3)若f(3)=-1,解不
此文档下载收益归作者所有