函数的性质知识点总结

函数的性质知识点总结

ID:6875609

大小:39.50 KB

页数:14页

时间:2018-01-29

函数的性质知识点总结_第1页
函数的性质知识点总结_第2页
函数的性质知识点总结_第3页
函数的性质知识点总结_第4页
函数的性质知识点总结_第5页
资源描述:

《函数的性质知识点总结》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、精品文档函数的性质知识点总结众所周知,函数是重点也是难点哈,函数性质,图像以及零点和分段函数是高考的热点哦,下面是小编为大家收集整理的函数的性质知识点总结,欢迎阅读。一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。特别地,当b=0时,y是x的正比例函数。即:y=kx(k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(

2、1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)2016全新精品资料-全新公文范文-全程指导写作–独家原创14/14精品文档2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。

3、当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。(1)设一次函数的表达式(也叫解析式)为y=kx+b。(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b……①2016全新精品资料-全新公文范文-全程指导写

4、作–独家原创14/14精品文档和y2=kx2+b……②(3)解这个二元一次方程,得到k,b的值。(4)最后得到一次函数的表达式。五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。s=vt。2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。六、常用公式:(不全,希望有人补充)1.求函数图像的k值:(y1-y2)/(x1-x2)2.求与x轴平行线段的中点:

5、x1-x2

6、/23.求与y轴平行线段的中点:

7、y1-y2

8、/24.求任意线段的长:√(x1-x2)+(y1-y2)(注:根号下

9、(x1-x2)与(y1-y2)的平方和)二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a则称y为x的二次函数。二次函数表达式的右边通常为二次三项式。II.二次函数的三种表达式一般式:y=ax+bx+c(a,b,c为常数,a≠0)2016全新精品资料-全新公文范文-全程指导写作–独家原创14/14精品文档顶点式:y=a(x-h)+k[抛物线的顶点P(h,k)]交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,

10、0)和B(x?,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b)/4ax?,x?=(-b±√b-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x的图像,可以看出,二次函数的图像是一条抛物线。IV.抛物线的性质1.抛物线是轴对称图形。对称轴为直线x=-b/2a。对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b)/4a)当-b/2a=0时,P在y轴上;当Δ=b-4ac=0时,

11、P在x轴上。3.二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

12、a

13、越大,则抛物线的开口越小。2016全新精品资料-全新公文范文-全程指导写作–独家原创14/14精品文档4.一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。5.常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ=b-4ac>0时,抛物线与x轴有2个交点。Δ=b-4ac=0时,抛物线与x轴有1个交点。Δ=b-

14、4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b-4ac的值的相反数,乘上虚数i,整个式子除以2a)V

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。