欢迎来到天天文库
浏览记录
ID:58576817
大小:1.05 MB
页数:26页
时间:2020-10-19
《初高中衔接教材数学.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、《初高中数学衔接教材》序言童永奇高一新生,你们好,祝贺大家考入临潼区马额中学!进入我校,同学们必须努力学好《初高中数学衔接教材》,理由如下:一方面,由于我校是普通农村高中学校,生源质量相对较差;另一方面,由于高中数学是初中数学的延伸与拓展,初中我们学到的知识、方法在高中会经常使用。既然学习《初高中数学衔接教材》如此重要,那么我们应该如何学习呢?提几点建议:一、“信心”是源泉。人缺乏信心,就丧失了驱动力,终将一事无成。 二、“恒心”是保障。人缺乏恒心,将“三天打鱼,两天晒网”。三、“巧心”是支柱。人无巧心,就缺乏灵气和创造力。最后,衷心祝愿同学们在《初高中数学衔接教材》
2、的学习中获得成功,请将那么成功的经验及时告诉我们,以便让更多的朋友分享你们成功的喜悦!临潼区马额中学高一数学校本教材童永奇结合我校学生的实际情况——基础知识较差,能力较差,没有掌握较好的学习方法,特设计适合我校高一学生使用的校本教材。主要包括以下两个容:一是《怎样学好数学》,二是《初高中数学衔接》。怎样学好数学?A.要学好数学,就应该了解数学本身具有的三大特点。(一)抽象性:数学的抽象性是无条件的,它的概念一经产生和定义之后,就稳定下来并且被看作是已知的,它们与现实的比较不是数学本身,而是它的应用问题。(二)严谨性:由于数学的严谨性,人们往往认为数学是一种“冷而严肃的美”。
3、罗素说:“数学,如果正确地看它,不但拥有真理,而且也是具有至高的美,正像雕刻的美,是一种冷而严肃的美,这种美不是投合我们天性的微弱的方面,这种美没有绘画或音乐的那些华丽的装饰,它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术才能显示的那种完美的境地。”(三)应用的广泛性:在任何一个领域,只要能从数学的角度提出问题,数学就能给出与所提问题的精确度相符合的答案,数学的这种威力恰恰是来源于它的抽象性。B.要学好数学,就应该重视数学思想方法的学习。数学思想方法的学习是一个潜移默化的过程,是在多次领悟、反复应用的基础上形成的,所以一道题做完后,就应该进行反思,回味解题中所使用的
4、思想方法。这正是一个理想的领悟机会,也是我们自己反思、归纳、总结,提炼升华的基础。解析几何的创建者笛卡儿说得好:“走过两遍的路就是方法”。解题时走了一遍,解题后又走了一遍,这就是两遍。这么一来,这道题在你手里就不再是一道题,而是一种方法。C.要学好数学,就应该学会解题时如何进行思维。从心理学角度说,解题过程是解题者面临新问题,而自己没有现存对策时所引起寻求解决问题办法的一种心理活动,主要是思维过程对思维活动这一系列过程的反映,在信息上就是收集、存储、加工和应用;在知识体系上就是联系、转换和应用过程;在解题策略上就是方法的选择和调整过程。D.要学好数学,就应该培养自己迎难而上
5、、顽强拼搏的精神。比如:数学大师——欧拉,多岁双目失明,一场大火又吞没了他的研究成果,他毫不气馁,发誓说:“如果命运是块玩石,我就化作大铁锤,将它砸得粉碎!”此后年,他在黑暗中摸索奋斗,又发表了多篇论文和多部专著。E.要学好数学,就应该学会辩证思维。所谓辩证思维,就是用运动的和寻求联系的观点、方法来思考,用辩证法来揭示事物的本质,这种思维方法能使学习和研究问题更加深入,更加触及数学本质;它既是思维发展最活跃,最富有创造性的高级阶段,也是辩证法在中学数学中的生动体现。因此,在解题时,应善于运用辩证思维方法分析问题,从而制定解题策略,把握解题规律。F.要学好数学,就应该有意识地
6、提高自己的自学能力。有了自学能力,就能广泛猎取知识,见多识广,利于开发智力,提高逻辑思维能力、空间想象能力、推理论证能力、独创思维能力以及运用能力等。要学好数学,就应该加强训练。要真真正正地做到:勤于动手,勤于动脑,积极思考,勇于探索,大胆实践。要学好数学,还应该注重多看一些有关的参考资料。目的:加深对教材知识的理解,开阔自己的知识视野,进一步提高自己分析问题、解决问题的能力,进一步领会灵活运用各种技巧、定理、公式在解题中的重要作用。对于一些好的解(证)法也应单独摘录出来;对于一些归纳、总结性的结论及一些常用技巧等也应摘录出来(此外,对于自己做题中所出现的一些典型错误,不但
7、要摘录出来,而且要彻底搞清错误的根源及如何准确求解)。这样做,对于学习数学来说,也是一种提高!最后,愿与各位同学共勉:相信自我,战胜自我,超越自我!!要踏,就请踏一路青春的风采;要走,就请走一程无怨无悔的人生!初高中数学衔接前言现有初高中数学知识存在以下“脱节”:1.立方和与差的公式初中已删去不讲,而高中的运算还在用。2.因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。3.二次根式中对分子、
此文档下载收益归作者所有