专题二第一讲-三角函数的图像与性质.docx

专题二第一讲-三角函数的图像与性质.docx

ID:58558222

大小:167.86 KB

页数:14页

时间:2020-10-21

专题二第一讲-三角函数的图像与性质.docx_第1页
专题二第一讲-三角函数的图像与性质.docx_第2页
专题二第一讲-三角函数的图像与性质.docx_第3页
专题二第一讲-三角函数的图像与性质.docx_第4页
专题二第一讲-三角函数的图像与性质.docx_第5页
资源描述:

《专题二第一讲-三角函数的图像与性质.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、专题二第一讲-三角函数的图像与性质--------------------------------------------------------------------------作者:_____________--------------------------------------------------------------------------日期:_____________第一讲三角函数的图像与性质例1、已知函数f(x)=tan(sinx)3(1)求f(x)的定义域和值域;(2)在(-π,π)中,求f(x)的单调

2、区间;(3)判定方程f(x)=tan2π在区间(-π,π)上解的个数。3解:(1)∵-1≤sinx≤1∴-≤sinx≤。又函数y=tanx在x=kπ333+(k∈Z)处无定义,且(-,)[-,](-π,π),22233∴令sinx=±,则sinx=±3解之得:x=kπ±(k∈Z)3223∴f(x)的定义域是A={x

3、x∈R,且x≠kπ±,k∈Z}3∵tanx在(-,)内的值域为(-∞,+∞),而当x∈A时,函数22y=sinx的值域B满足(-,)B,∴f(x)的值域是(-∞,+∞)。1322和x=2(2)由f(x)的定义域知,f(

4、x)在[0,π]中的x=处无定义。33设t=sinx,则当x∈[0,)∪(,2)∪(2,π)时,t∈[0,)333332∪(,],且以t为自变量的函数y=tant在区间(0,),(,3]上分2322别单调递增。又∵当x∈[0,]时,函数t=sinx单调递增,且t∈[0,)332当x∈(3,]时,函数t=sinx单调递增,且t∈(,]2323当x∈[,2)时,函数t=sinx单调递减,且t∈(,]23323当x∈(2,π)时,函数t=sinx单调递减,且t∈(0,)3322∴f(x)=tan(13sinx)在区间[0,),(,]上分

5、别是单调递增函数;在332[,2),(2,)上是单调递减函数。233又f(x)是奇函数,所以区间(-,0],[-,-3)也是f(x)的单调递2232增区间[,),(,]是f(x)的递减区间。332故在区间(-π,π)中,f(x)的单调递增区间为:[-2,-),(-,333),(,]单调递减区间为[,2),(2,2),(2,)。323333(3)由f(x)=tan2π得:tan(sinx)=tan(2π)sinx=kπ+2π(k∈Z)33333sinx=k3+6(k∈Z)①又∵-1≤sinx≤1,∴332k3233∴k=0或k=-1

6、6当k=0时,从①得方程sinx=3当k=1时,从①得方程sinx=-3+66,sinx=-3+3显然方程6,在(-ππ)上各有2个解,故sinx=,33f(x)=tan2π在区间(-π,π)上共有4个解。3说明:本题是正弦函数与正切函数的复合。(1)求f(x)的定义域和值域,应当先搞清楚y=sinx的值域与y=tanx的定义域的交集;(2)求f(x)的单调区3间,必须先搞清f(x)的基本性质。如奇偶性、周期性、复合函数单调性等。例2、设f(x)asinxbcosx(0)的周期T,最大值f()4,12(1)求、a、b的值;3(2)

7、若、为方程f(x)0的两个根,且、的终边不共线,求tan()的值。解:(1)f(x)22),T,2,又f(x)的最大值absin(xf()4,4a2b2①,且4asin2bcos2②,121212由①、②解出a=2,b=3.(2)f(x)2sin2x23cos2x4sin(2x),f()f()0,34sin(2)4sin(23),322k2,或22k(2),3333即k(、共线,故舍去),或k,6tan()tan(k)3(kZ).63说明:方程组的思想是解题时常用的基本思想方法;在解题时不要忘记三角函数的周期性。例3、已知函数f(

8、x)sin(x)(0,0)是R上的偶函数,其图3,0)对称,且在区间0,象关于点M(42上是单调函数.求和的值。解:由f(x)是偶函数,得f(x)f(x),即sin(x)sin(x),所以cossinxcossinx,cossinx0对任意x都成立,且0,所以得cos0,依题设0,所以解得.2由f(x)的图象关于点M对称,得f(3x)f(3x),44取x0,得f(3)f(3),所以f(3)0,444f(3)sin(34)cos3,4244cos30,又0,得32k,k0,1,2⋯,4421),k0,1,2,⋯.(2k32,f(x

9、)sin(2x当k=0,)在[0,]上是减函数;3322当k=1,2,f(x)sin(2x2)在[0,]上是减函数;10,f(x)2当k2,sin(x)在[0,]上不是函数.322所以,合得2或2.3例4、已知函数f(x)cos2xπ,g(x)11

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。