欢迎来到天天文库
浏览记录
ID:58558200
大小:665.00 KB
页数:123页
时间:2020-09-06
《博弈论及应用2.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第二章完全信息静态博弈本章介绍完全信息静态博弈。完全信息静态博弈——各博弈方同时决策,且所有博弈方对各方得益都了解的博弈。囚徒的困境、齐威王田忌赛马、猜硬币、石头剪子布、古诺产量决策都属于这种博弈。完全信息静态博弈属于非合作博弈最基本的类型。本章介绍完全信息静态博弈的一般分析方法、纳什均衡概念、各种经典模型及其应用等。2.1基本分析思路和方法2.1.1上策均衡2.1.2严格下策反复消去法2.1.3划线法2.1.4箭头法2.1.1上策均衡——基本分析思路和方法在某个博弈中,如果不管其它博弈方选择什么策略,一博弈方的某个策略给他带来的得益始终高于其他策略,至少不低于其他策略。这时我们不难理
2、解,上述“某个策略”必然是该博弈方愿意选择的策略。例如囚徒困境博弈中的“坦白”就是这样的策略(对两个博弈方都成立)。Cont…我们称这种策略为该博弈方的一个“上策”(Dominant-strategy)。进一步,如果一个博弈的某个策略组合中的所有策略都是各个博弈方各自的上策,那么这个策略组合肯定是所有博弈方都愿意选择的,必然是该博弈比较稳定的结果。Cont…我们称这样的策略组合为该博弈的一个“上策均衡”(Dominant-strategyEquilibrium)。上策均衡是博弈分析中最基本的均衡概念之一,上策均衡分析是最基本的博弈分析方法。囚徒的困境中的(坦白,坦白)实际上就是一个上策
3、均衡“坦白”对该博弈的两个博弈方来说都是上策。2.1.1上策均衡——应用上策:不管其它博弈方选择什么策略,一博弈方的某个策略给他带来的得益始终高于其它的策略,至少不低于其他策略的策略。囚徒的困境中的“坦白”;双寡头削价中“低价”。-5,-50,-8-8,0-1,-1坦白不坦白坦白不坦白两个罪犯的得益矩阵囚徒2囚徒1Cont…100,10020,105150,2070,70高价低价高价低价寡头2寡头1双寡头的得益矩阵上策均衡上策均衡:一个博弈的某个策略组合中的所有策略都是各个博弈方各自的上策,必然是该博弈比较稳定的结果上策均衡不是普遍存在的Cont…100,10020,105150,20
4、70,70高价低价高价低价寡头2寡头1双寡头的得益矩阵5,14,49,-10,0按等待按等待小猪大猪智猪博弈的得益矩阵Cont…上策均衡上策均衡:一个博弈的某个策略组合中的所有策略都是各个博弈方各自的上策,必然是该博弈比较稳定的结果(局限性)上策均衡不是普遍存在2.1.2基本分析思路和方法-严格下策反复消去法一、思路和原理反思上策均衡分析的思路,不难发现上策均衡分析采用的决策思路是一种选择法的思路,是在所有可选择策略中选出最好一种地思路。实际上,选择是指人们在决策活动所运用的一种策略思路而不是全部的决策思路,人们在决策活动中还会采用另外的决策思虑。排除的思路,也就是所谓的排除法,就是其
5、中最常运用的一种。续排除法与选择法在形式上正好相反,它是通过对可选策略的相互比较,把不可能采用的较差策略排除掉,从而筛选出较好的策略,或者至少缩小候选策略的范围。这种排除法的思路导出了博弈分析中的严格下策反复消去法。对囚徒的困境博弈中的两个博弈方来说不管对方的策略如何,各自两种可选策略中的“坦白”策略都比“不坦白”策略来得好。续这时我们称“不坦白”是两个博弈中的相对于“坦白”策略的“严格下策”。一般地,如果在一个博弈中,不管其他博弈方的策略如何变化,一个博弈方的某种策略给他带来的得益,总是比另一种策略给他带来的得益要小,那么我们称前一种策略为相对于后一种策略的一个“严格下策”。若对一个
6、博弈运用严格下策反复消去法后,整个博弈方只有唯一的策略幸存下来,那么该策略将是该博弈方的唯一选择,如果该博弈的策略组合中只有唯一一个幸存下来,这个策略组合就是该博弈的结果。如囚徒的困境的博弈中的(坦白,坦白)。2.1.2严格下策反复消去法——应用严格下策:不管其它博弈方的策略如何变化,给一个博弈方带来的收益总是比另一种策略给他带来的收益小的策略严格下策反复消去:1,01,30,10,40,22,0左中右AB1,01,30,40,2左中1,01,3左中续缺陷:(1)有些博弈无严格下策;如抛硬币博弈。(2)即使有严格下策,也只可能消去一部分。此时该方法失效,失效的根源是策略的相互依存性,他
7、们之间可能没有严格的依存关系。2.1.3划线法的基本思想博弈方的最终目标都是实现自身的最大得益。在具有策略和利益相互依存性的博弈问题中,各个博弈方的得益既取决于自己选择的策略,还与其他博弈方选择的策略有关,因此,博弈方在决策时必须考虑其他博弈方的存在和策略选择。根据这种思想,科学的决策思路应该是:先找出自己针对其他博弈方每种策略或策略组合配合,给自己带来最大得益的策略(这种相对最佳对策总是存在的,不过不一定惟一),然后在此基础上,通过对其他博弈
此文档下载收益归作者所有