5、成立,即,那么.这就是说,当时等式也成立.根据(1)和(2)可知,等式对任何都成立.解法二:由,,可得,所以为等差数列,其公差为1,首项为0,故,所以数列的通项公式为.(Ⅱ)解:设, ① ②当时,①式减去②式,得,.这时数列的前项和.当时,.这时数列的前项和.(Ⅲ)证明:通过分析,推测数列的第一项最大,下面证明:. ③由知,要使③式成立,只要,因为.所以③式成立.因此,存在,使得对任意均成立.22.本小题主要考查椭圆的标准方程和几何性质、直线方程、求曲线的方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法及推理、运算能力.满分14分.(Ⅰ)