资源描述:
《数学建模-优化问题课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、约束优化constrainedoptimization的简单分类数学规划mathematicalprogramming或连续优化continuousoptmization线性规划(LP)目标和约束均为线性函数Linearprogramming非线性规划(NLP)目标或约束中存在非线性函数Nonlinearprogramming二次规划(QP)目标为二次函数、约束为线性Quadraticprogramming一般优化问题概述整数规划(IP)决策变量(全部或部分)为整数Integerprogramming整数线性规划(ILP),整
2、数非线性规划(INLP)纯整数规划(PIP),混合整数规划(MIP)Pure(mixed)Integerprogramming一般整数规划,0-1(整数)规划Zero-oneprogramming离散优化discreteoptimization或组合优化combinatorialoptimization一般优化问题概述无约束最优化问题求解无约束最优化问题的的基本思想*无约束最优化问题的基本算法返回标准形式:求解无约束最优化问题的基本思想求解的基本思想(以二元函数为例)531连续可微多局部极小唯一极小(全局极小)搜索过程最优点(
3、11)初始点(-11)-114.00-0.790.583.39-0.530.232.60-0.180.001.500.09-0.030.980.370.110.470.590.330.200.800.630.050.950.900.0030.990.991E-40.9990.9981E-50.99970.99981E-8返回无约束优化问题的基本算法最速下降法是一种最基本的算法,它在最优化方法中占有重要地位.最速下降法的优点是工作量小,存储变量较少,初始点要求不高;缺点是收敛慢,最速下降法适用于寻优过程的前期迭代或作为间插步骤,
4、当接近极值点时,宜选用别种收敛快的算法.1.最速下降法(共轭梯度法)算法步骤:2.牛顿法算法步骤:如果f是对称正定矩阵A的二次函数,则用牛顿法经过一次迭代就可达到最优点,如不是二次函数,则牛顿法不能一步达到极值点,但由于这种函数在极值点附近和二次函数很近似,因此牛顿法的收敛速度还是很快的.牛顿法的收敛速度虽然较快,但要求Hessian矩阵要可逆,要计算二阶导数和逆矩阵,就加大了计算机计算量和存储量.Matlab优化工具箱简介1.MATLAB求解优化问题的主要函数2.优化函数的输入变量使用优化函数或优化工具箱中其它优化函数时,输
5、入变量见下表:3.优化函数的输出变量下表:用Matlab解无约束优化问题其中(3)、(4)、(5)的等式右边可选用(1)或(2)的等式右边。函数fminbnd的算法基于黄金分割法和二次插值法,它要求目标函数必须是连续函数,并可能只给出局部最优解。常用格式如下:(1)x=fminbnd(fun,x1,x2)(2)x=fminbnd(fun,x1,x2,options)(3)[x,fval]=fminbnd(...)(4)[x,fval,exitflag]=fminbnd(...)(5)[x,fval,exitflag,outpu
6、t]=fminbnd(...)ToMatlab(wliti1)主程序为wliti1.m:f='2*exp(-x).*sin(x)';fplot(f,[0,8]);%作图语句[xmin,ymin]=fminbnd(f,0,8)f1='-2*exp(-x).*sin(x)';[xmax,ymax]=fminbnd(f1,0,8)例2对边长为3米的正方形铁板,在四个角剪去相等的正方形以制成方形无盖水槽,问如何剪法使水槽的容积最大?解先编写M文件fun0.m如下:functionf=fun0(x)f=-(3-2*x).^2*x;主程序
7、为wliti2.m:[x,fval]=fminbnd('fun0',0,1.5);xmax=xfmax=-fval运算结果为:xmax=0.5000,fmax=2.0000.即剪掉的正方形的边长为0.5米时水槽的容积最大,最大容积为2立方米.ToMatlab(wliti2)命令格式为:(1)x=fminunc(fun,X0);或x=fminsearch(fun,X0)(2)x=fminunc(fun,X0,options);或x=fminsearch(fun,X0,options)(3)[x,fval]=fminunc(...
8、);或[x,fval]=fminsearch(...)(4)[x,fval,exitflag]=fminunc(...);或[x,fval,exitflag]=fminsearch(5)[x,fval,exitflag,output]=fminunc(...);或[x,fva