欢迎来到天天文库
浏览记录
ID:58426725
大小:778.00 KB
页数:13页
时间:2020-05-12
《全等三角形单元复习与巩固.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、全等三角形单元复习与巩固一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:l了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;l探索三角形全等的条件,能利用三角形全等进行证明,掌握综合法证明的格式;l掌握尺规作图作角平分线,了解角的平分线的性质,能利用三角形全等证明角的平分线的性质和判定,并会利用角的平分线的性质和判定进行证明;l能用三角形的全等和角平分线性质解决实际问题。重点难点:l重点:理解证明的基本过程,掌握用综合法证明的格式;三角形全等的性质和条件以及角平分线的性质。l难点:掌握用综合法证明的格式;选用合
2、适的条件证明两个三角形全等。学习策略:l通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。在三角形全等知识的基础上,探究理解角平分线的性质和判定,并通过练习加深本章知识的理解及灵活运用。二、学习与应用“凡事预则立,不预则废”。科学地预习才能使我们上课听讲更有目的性和针对性。我们要在预习的基础上,认真听讲,做到眼睛看、耳朵听、心里想、手上记。知识点一:全等形能够完全的两个图形叫做全等形.知识点二:全等三角形能够完全的两个三角形叫做全等三角形.要点诠释:(1)互相重合的顶点叫做,互相重合的边叫做,互相重合的角叫做.(2)在写两个三角
3、形全等时,通常把的字母写在对应位置上,这样容易写出对应边、对应角.例如,△ABC与△DFE全等,点A与点,点B与点,点C与点是对应顶点,记作△ABC≌△DFE,而不写作△ABC≌△EFD等其他形式.知识点三:全等三角形的性质全等三角形的对应边、对应角.知识点四:两个三角形全等的条件(一)边角边:有和它们的对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).注:运用边角边公理判定两个三角形全等时要抓住角是两边的夹角,边是夹这个角的两边,不要错误认为:两个三角形只要有两条边和一个角对应相等,这两个三角形就一定全等.(二)角边角:有和它们的对应相等的两个三角形全等(可
4、以简写成“角边角”或“ASA”).(三)边边边:对应相等的两个三角形全等(可以简写成“边边边”或“SSS”).(四)角角边:两个和其中一个角的对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)(五)斜边、直角边(HL):在两个直角三角形中,和一条对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)。注:(1)HL定理是三角形所独有的,对于一般三角形不成立.(2)判定两个直角三角形全等时,这两个直角三角形已经有一对直角相等的条件,只需找另个条件即可,而这两个条件中必须有对应相等,与一般三角形全等一样,只有三个角相等的两个直角三角形不一定全等.知识点
5、五:如何选定判定方法(一)条件是一边、一角对应相等时,可选用SAS、AAS、.(二)条件是两角对应相等时,可选用、.(三)条件是两边对应相等时,可选用、.(四)条件是直角三角形时,可选用,也可选用SAS、AAS、ASA、SSS。知识点六:角平分线(一)角平分线的两种定义(1)把一个角分成两个的角的叫做角的平分线.(2)角的平分线可以看作是到角的两边的点的集合.(二)角平分线的性质定理角的平分线上的点到这个角的两边的.(三)角的平分线的判定定理到一个角的两边距离相等的点,在这个角的上.经典例题-—自主学习认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举
6、一反三。若有其它补充可填在右栏空白处。更多精彩请参看网校资源ID:#jdlt0#类型一:三角形全等的应用例1.如图:BE、CF相交于点D,DE⊥AC,DF⊥AB,垂足分别为E、F,且DE=DF。求证:AB=AC。思路点拨:挖掘并合理运用隐含条件:(1)隐含相等的线段:公共边、线段的和(或差);(2)隐含相等的角:公共角、对顶角、角的和或差。解析:总结升华:举一反三:【变式1】如图:BE⊥AC,CF⊥AB,BM=AC,CN=AB。求证:(1)AM=AN;(2)AM⊥AN。答案:【变式2】如图:∠BAC=90°,CE⊥BE,AB=AC,∠ABE=∠CBE,求证:BD=2EC。
7、答案:类型二:构造全等三角形例2.如图,△ABC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明。你添加的条件是:。思路点拨:此题属于开放型题目,此类题目一般包括:条件开放型、结论开放型、综合开放型。此类题目的答案一般不唯一。本题答案就不唯一,若按照以下方式之一来添加条件:①,②,③,④,都可得,从而有AC=BD。答案:总结升华:举一反三:【变式1】如图,已知AB=AD,BC=CD,AC、BD相交于E。由这些条件可以得到若干结论,请你写出其中
此文档下载收益归作者所有