资源描述:
《步步高2015高考数学(人教A理)一轮讲义:11.2用样本估计总体.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、§11.2 用样本估计总体[1.频率分布直方图(1)通常我们对总体作出的估计一般分成两种,一种是用样本的频率分布估计总体的分布,另一种是用样本的数字特征估计总体的数字特征.(2)在频率分布直方图中,纵轴表示,数据落在各小组内的频率用各小长方形的面积表示,各小长方形的面积总和等于1.(3)连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率分布折线图就会越来越接近于一条光滑的曲线,统计中称之为总体密度曲线,它能够更加精细的反映
2、出总体在各个范围内取值的百分比.(4)当样本数据较少时,用茎叶图表示数据的效果较好,它不但可以保留所有信息,而且可以随时记录,给数据的记录和表示都带来方便.2.用样本的数字特征估计总体的数字特征(1)众数、中位数、平均数众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.平均数:样本数据的算术平均数,即=(x1+x2+…+xn).在频率分布直方图中,中位数左边和右边的直方图的面积应该
3、相等.(2)样本方差、标准差标准差s=,其中xn是样本数据的第n项,n是样本容量,是平均数.标准差是反映总体波动大小的特征数,样本方差是标准差的平方.通常用样本方差估计总体方差,当样本容量接近总体容量时,样本方差很接近总体方差.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( √ )[来源:中教网](2)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.( × )(3)从频率分布直方图得不出原始的数据内容,把数据表示
4、成直方图后,原有的具体数据信息就被抹掉了.( √ )第13页共13页(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.( × )2.某老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该组数据的方差s2=________.答案 3.2解析 ==7,∴s2=[(10-7)2+(6-7)2+(8-7)2+(5-7)2+(6-7)2]==3.2.3.一个容量为20的样本,数据的分组及各组的频数如下:[10,20),2;[20,30),3;[30,
5、40),x;[40,50),5;[50,60),4;[60,70),2;则x=________;根据样本的频率分布估计,数据落在[10,50)的概率约为________.答案 4 0.7解析 x=20-(2+3+5+4+2)=4,P==0.7或P=1-=0.7.4.(2012·湖南)如图所示是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.(注:方差s2=[(x1-)2+(x2-)2+…+(xn-)2],其中为x1,x2,…,xn的平均数)答
6、案 6.8解析 依题意知,运动员在5次比赛中的分数依次为8,9,10,13,15,其平均数为=11.由方差公式得s2=[(8-11)2+(9-11)2+(10-11)2+(13-11)2+(15-11)2]=(9+4+1+4+16)=6.8.5.某中学为了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3000名学生在该次数学考试中成绩小于60分的学生数是________.答案 60
7、0[来源:z。zs。tep.com]解析 由直方图易得数学考试中成绩小于60分的频率为(0.002+0.006+0.012)×10=0.2,所以所求分数小于60分的学生数为3000×0.2=600.题型一 频率分布直方图的绘制与应用第13页共13页例1 某校从参加高一年级期中考试的学生中随机抽出60名学生,将其物理成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图,观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率,并补全这个
8、频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试中的平均分.思维启迪 利用各小长方形的面积和等于1求分数在[70,80)内的频率,再补齐频率分布直方图.解 (1)设分数在[70,80)内的频率为x,根据频率分布直方图,有(0.010+0.015×2+0.025+0.005)×10+x=1,可得x=0.3,所以频率分布直方图如图所示.(2)平均分:45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71