欢迎来到天天文库
浏览记录
ID:58323525
大小:145.28 KB
页数:9页
时间:2020-09-11
《对数的发展史.pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯教材分析:对数产生于17世纪初叶,为了适应航海事业的发展,需要确定航程和船舶的位置,为了适应天文事业的发展,需要处理观测行星运动的数据,就是为了解决很多位数的数字繁杂的计算而产生了对数恩格斯曾把对数的发明与解析几何学的产生、微积分学的创始并称为17世纪数学的三大成就,给予很高的评价今天随着计算器的普及和电子计算机的广泛使用以及航天航海技术的不断进步,利用对数进行大数的计算功能的历史使命已基本完成,已被新的运算工具所
2、取代,因此中学对于传统的对数内容进行了大量的删减但对数函数应用还是广泛的,后续的教学内容也经常用到本节讲对数的定义和运算性质的目的主要是为了学习对数函数对数概念与指数概念有关,是在指数概念的基础上定义的,在一般对数定义logaN(a>0,a≠1)之后,给出两个特殊的对数:一个是当底数a=10时,称为常用对数,简记作lgN=b;另一个是底数a=e(一个无理数)时,称为自然对数,简记作lnN=b这样既为学生以后学习或读有关的科技书给出了初步知识,也使教材大大简化,只保留到学习对数函数知识够用即可对数的创始人是苏格
3、兰数学家纳皮尔(Napier,1550年~1617年)。他发明了供天文计算作参考的对数,并于1614年在爱丁堡出版了《奇妙的对数定律说明书》,公布了他的发明。恩格斯把对数的发明与解析几何的创始,微积分的建立并称为17世纪数学的三大成就。1)已知a,b,求N乘方运算2)已知b,N,求a开方运算3)已知a,N,求b对数运算“對數”(logarithm)一詞源自於希臘,表示思想的文字或記號,也可作“計算”或“比率”。由於16世紀的天文星象的觀測、航海、測量、地圖的繪製等,需要大量且龐雜的數字乘除開方運算,這種化乘除
4、為加減的運算工具,即為對數。而對數的創始人是蘇格蘭數學家那皮爾。於是我們用了logarithm這個英文單字,取其前三個字母log來表示中,與指數式中其他數值之間的關係。例如:,即是2的3次方是8,反之以2為底數時,多少次方可得到8呢?這個3的值就是對數,作1自然对数的由来这里的e是一个数的代表符号,而我们要说的,便是e的故事。这倒叫人有点好奇了,要能说成一本书,这个数应该大有来头才是,至少应该很有名吧?但是搜索枯肠,大部分人能想到的重要数字,除了众人皆知的0及1外,大概就只有和圆有关的π了,了不起再加上虚数单
5、位的i=√-1。这个e究竟是何方神圣呢?在高中数学里,大家都学到过对数(logarithm)的观念,也用过对数表。教科书里的对数表,是以10为底的,叫做常用对数(commonlogarithm)。课本里还简略提到,有一种以无理数e=2.71828⋯⋯为底数的对数,称为自然对数(naturallogarithm),这个e,正是我们故事的主角。不知这样子说,是否引起你更大的疑惑呢?在十进位制系统里,用这样奇怪的数为底,1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
6、⋯难道会比以10为底更「自然」吗?更令人好奇的是,长得这麼奇怪的数,会有什麼故事可说呢?这就要从古早时候说起了。至少在微积分发明之前半个世纪,就有人提到这个数,所以虽然它在微积分里常常出现,却不是随著微积分诞生的。那麼是在怎样的状况下导致它出现的呢?一个很可能的解释是,这个数和计算利息有关。我们都知道复利计息是怎麼回事,就是利息也可以并进本金再生利息。但是本利和的多寡,要看计息周期而定,以一年来说,可以一年只计息一次,也可以每半年计息一次,或者一季一次,一月一次,甚至一天一次;当然计息周期愈短,本利和就会愈高
7、。有人因此而好奇,如果计息周期无限制地缩短,比如说每分钟计息一次,甚至每秒,或者每一瞬间(理论上来说),会发生什麼状况?本利和会无限制地加大吗?答案是不会,它的值会稳定下来,趋近於一极限值,而e这个数就现身在该极限值当中(当然那时候还没给这个数取名字叫e)。所以用现在的数学语言来说,e可以定义成一个极限值,但是在那时候,根本还没有极限的观念,因此e的值应该是观察出来的,而不是用严谨的证明得到的。包罗万象的e读者恐怕已经在想,光是计算利息,应该不至於能讲一整本书吧?当然不,利息只是极小的一部分。令人惊讶的是,这
8、个与计算复利关系密切的数,居然和数学领域不同分支中的许多问题都有关联。在讨论e的源起时,除了复利计算以外,事实上还有许多其他的可能。问题虽然都不一样,答案却都殊途同归地指向e这个数。比如其中一个有名的问题,就是求双曲线y=1/x底下的面积。双曲线和计算复利会有什麼关系,不管横看、竖看、坐著想、躺著想,都想不出一个所以然对不对?可是这个面积算出来,却和e有很密切的关联。我才举了一个例子而已,这本书里提
此文档下载收益归作者所有