欢迎来到天天文库
浏览记录
ID:58317784
大小:41.70 KB
页数:4页
时间:2020-09-11
《怎么培养中学生的创造力.pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯怎么培养中学生的创造力在学校中应如何培养学生的创造力?总的说来,只有在学生的创造活动中才能培养学生的创造才能和创造精神,根据心理学的有关研究资料,主要应抓好以下几个方面。(一)启发学生主动质疑问难所谓“质疑问难”,就是要勇于提出疑问,并为解疑而不耻下问,敢于攻关。中学生生活在一个空前丰富多彩的大千世界里,对他们来说,新事物层出不穷,疑惑也会接踵而来。由于他们有强烈的求知欲,他们对观察到的各种事物常常会提出许多问题,他们提的问题,绝不会都是有价值的,提出的问题有的甚至是可笑
2、的。然而,这正是他们探索未知领域的开始。发明家的创造正是从质疑问难开始,从解疑入手的。从有疑到解疑到创新,这正是事物发展的客观规律。我们以史丰收创立“快速计算法”为例,普通的加法、减法、乘法运算都是从低位算起的,而史丰收在十一岁时就对这人人熟知的运算法则提出怀疑。他认为由于交换律、结合律、分配律的存在,加法、乘法运算的结果与其运算顺序是无关的。现在通行的低位算起的运算法则与读数写数的顺序不一致与人们口算的一般习惯也相矛盾,可不可以把读、写、看、算四者结合起来呢?正是这种质疑问难的钻研精神推动着他进行了长期的探索,终于找到了高位算起运算中的进位规律,创立了独具一格的“
3、快速计算法”。可见,大胆生疑、勇于解疑、敢于创新,是创造人才的一种宝贵品质。培养中学生这种品质,首先,应当鼓励他们大胆质疑、勇于发问。对他们的发问,教师要耐心予以解释,不可挫伤他们的好奇心,一时说不清楚的,也要鼓励他们去继续探索研究。其次,要引导学生有目的设疑。疑,包括无意的和有意的。无意的即见什么问什么,这在中学生当中是普遍的、多数的。有意的即为解决某一方面的问题去设疑、解疑。教师应当引导学生从无意设疑向有意设疑发展,这样才会使疑问与创造有机地结合起来。再次,鼓励学生质疑问难,引导他们在独立思考的基础上创造性地解决各种实际问题。另外,教师还可以从学生的实际出发和学
4、生一起设疑,并善于创设问题的情境,引导学生逐步解疑,使学生在探索新知识中有所发现和创新。(二)引导学生积极发现、解决问题纵观各级各类学校的现行教材,习题解答、学习参考书,多数是采用一问一答式论述问题、解答问题的方法。这一方面说明高度集中了人类历史所积累的科研成果,使学生在最短的时间内打下比较坚实的基础。另一方面我们也从中发现,1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯这种传统刻板式的一问一答的学习内容在束缚着学生的创造力,使之长时间地固定在一种传统的解决问题、论证问题的方法上。这样久而久之就使学生的思维容量趋于
5、僵化,是不利于培养学生的创造才能的。在这种以传授知识为主的传统教学工作中,明显暴露的问题:一是把学生当成知识的容器,等着老师“灌”,这就颠倒了学习过程中的主体和客体的关系。二是学生所学的内容是机械死板的条文,学过之后,不能深刻理解、融会贯通,不能理论联系实际,学以致用。而创造力是靠扩大学生的知识视野,开拓他们的思路,坚持手脑并用,在各种学习活动中来促进发展的。所以必须从教学的指导思想、教学内容、教学方法和教学体系等方面进行一系列的改革。努力培养学生的创造力。当前的信息传递从内容到方法日益丰富多彩,而教科书在丰富性、新颖性、趣味性和实践性等方面的局限性日益显露,所以,
6、从培养学生创造力的角度来看,第一课堂的教学仅仅是一个方面,同时应当开辟第二课堂,通过各种学科小组的科技活动,注意引导学生从多角度观察问题、探索问题、发现问题和解决问题,对培养他们的创造力来说是多方面的非常重要的。(三)鼓励学生敢于标新立异传统教学禁止学生猜想,这是不利于发展学生创造力的。从第一课堂到第二课堂,在各种创造性活动中,学生所面临的是没有现成答案,也没有旧例可循的一些新问题,要解决这些问题只有两条途径,一是依靠尝试错误的方法,不断淘汰无效尝试,最后找到解题方案。二是依靠猜想,判断思考方向,提出一个可能性较大的假设,然后加以检验。如一位数学教师讲解分数除法时,
7、教材上对有关运算法则是这样概括的:“一个数除以分数,等于它乘以原分数的倒数。”老师讲完后,一个学生竟提出这样一个问题:“分数除以分数,能不能将分子除以分子,分母除以分母呢?”教师信任地望着这个学生说:“你看呢?”这个学生不加思索地说:“我看是可以的。”当老师让他叙述一下道理时,这个学生却无言答对。因为他不过是根据分数乘法法则而提出的这个带有直觉性的猜想并没有什么充分的依据。这时老师在黑板上写下了一道算题,让两个学生到黑板上演算。一个学生按老师讲解的法则计算,一个是刚才发表过不同看法的学生让他按照自己的设想去算。两种算法结果是一样的。学生的猜想被证实了。由于这个学
此文档下载收益归作者所有