培养学生数学探索能力的几点做法-论文.pdf

培养学生数学探索能力的几点做法-论文.pdf

ID:58301007

大小:98.78 KB

页数:1页

时间:2020-05-09

培养学生数学探索能力的几点做法-论文.pdf_第1页
资源描述:

《培养学生数学探索能力的几点做法-论文.pdf》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、。德国圆留@2014年第29期(总第257期)培养学生数学探索能力的几点做法李登芬’。周占清(1.重庆市渝北区统景初级中学,重庆401120;2.重庆市渝北区统景中心小学,重庆401120)培养初中学生的数学探索能力,是一项系统的工程,它包含三、鼓励质疑,激起向权威挑战的勇气了许多方面,以下是我在教学实践中,培养学生数学探索能力的我们会经常遇到这样的情况:有的同学在解完一道题是时,几点尝试,它包括培养兴趣、指导方法、鼓励质疑、鼓励创新等几总是想问老师,或找些权威的书籍,来验证其结论的正确。这是个方面。一种不自信的表现,他们对权威的结论从没有质疑,更谈不上创一、培养数学兴趣,让学生学有动

2、力新。长此以往的结果,只能变成唯书本的“书呆子”。中学阶段,应兴趣是动力的源泉,要获得持久不衰的学习数学的动力,就该培养学生相信自己,敢于怀疑的精神,甚至应该养成向权威挑要培养学生的数学兴趣。在教学中我做到了以下几点:战的习惯,这对他们现在的学习,特别是今后的探索和研究尤为(1)加强基础知识的教学,使学生能接近数学。数学并不神重要。若果真找出“权威”的错误,对学生来讲也是莫大的鼓舞。秘,数学就在我们周围,我们时时刻刻都离不开数学。例如:抛物线Y:=2px的一条弦直线是y=2x+5,且弦的中点的(2)重视数学的应用教学,提高学生对数学的认识。许多人横坐标是2,求此抛物线方程。某“权威答案

3、”如下:认为,学那么多数学有什么用?日常生活中根本用不到。事实上,由y=2x+5,Y=2px得:4x+(10一P)x+25=0①数学的应用充斥在生活的每个角落。以往的教材是和生活实践由x,+X=一(10一P)/4得P=2故所求抛物线方程为是脱节的,新教材在这方面有了很大改进,这也是向数学应用迈Y=4X出的一大步,比如线性规划问题就是二元一次不等式组的一个质疑:把P=2代入方程①,方程无实解,或方程①要有应用。教学中重视数学的应用教学,能让学生充分感受到数学的△=4P(P一20)>0,即P<0,或P>20,故P=2不合作用和魅力,从而热爱数学。题意。本题无解。(3)引入数学实验,让学生感

4、受到数学的直观。让学生以研教学中,对这样的新发现、巧思妙解及时褒奖、推广,能激起究者的身份,参与包括探索、发现在内的获得知识的全过程,使他们不断进取,努力钻研的热情。而且我认为,质疑教学,对学生其体会到通过自己的努力取得成功的快乐,从而产生浓厚的兴今后独立创造数学新成果很有帮助,也是数学探索能力的一个趣和求知欲。重要方面。(4)鼓励攻克数学,使其在发现和创造中享受成功的喜悦。四、鼓励学习创新,让学生学有创见数学之所以能吸引一代又一代人为之拼搏,很大程度上是因为在数学教学中,我们不仅要让学生学会学习,而且要鼓励创数学研究的过程中,充满了成功和欢乐。孔子说:知之者不如好新,发展学生的学习能

5、力,让学生创造性地学习。之者,好之者不如乐之者,学生们学习乐在其中,才能培养出学(1)注意培养学生发现问题和提出问题的能力,老师要深入生不断探索的欲望。分析并把握知识间的联系,从学生的实际出发,依据数学思维规二、指导学习方法。给学生学习的钥匙律,提出恰当的富于启发性的问题,去启迪和引导学生积极思“未来的文盲不再是不识字的人,而是没有学会怎样学习的维,同时采用多种方法,引导学生通过观察、试验、分析、猜想、归人”,这充分说明了学习方法的重要性,它是获取知识的金钥匙。纳、类比、联想等思想方法,主动地发现问题和提出问题。学生一旦掌握了学习方法,就能自己打开知识宝库的大门。因(2)引导学生广开思

6、路,重视发散思维,鼓励学生标新立异,此,改进课堂教学,不但要帮助学生“学会”,更要指导学生“会大胆探索。例如,已知点P(X,Y)是圆(x一3)+(y-4)=1上的学”。在教学中,我主要在读、议、思等几个方面给以指导。点,求Y/x的最大值和最小值。本题如用参数方程或直接利用(1)教会学生“读”,这主要用来培养学生的数学观察力和归点在圆上的性质,则解决较繁琐,若能打破常规,作恰当点拨,引纳整理问题的能力。我们知道,数学观察力是一种有目的、有选导学生数形结合,设k=Y/X,即求直线Y=kx的斜率的最大择并伴有注意的对数学材料的知觉能力。教会学生阅读,就是培值和最小值问题,再进一步引导,求(y

7、+1)/(x+2)的最大值和最养学生对数学材料的直观判断力,这种判断包括对数学材料的小值问题,可把定点分圆上、圆内、圆外几种情况进行讨论,则对深层次、隐含的内部关系的实质和重点,逐步学会归纳整理,善求y/x之类的数的最大值、最小值问题的几何意义有更深的了于抓住重点以及围绕重点思考问题的方法。这在预习和课外自解。学中尤为重要。以上是我在培养学生探索能力方面的一些做法,当然,教无(2)鼓励学生“议”,在教学中鼓励学生大胆发言,对于对于定法,在培养学

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。