欢迎来到天天文库
浏览记录
ID:57710856
大小:48.00 KB
页数:4页
时间:2020-09-01
《二次函数分类题型总结.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二次函数的定义(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式)1、下列函数中,是二次函数的是.①y=x2-4x+1;②y=2x2;③y=2x2+4x;④y=-3x;⑤y=-2x-1;⑥y=mx2+nx+p;⑦y=错误!未定义书签。;⑧y=-5x。2、在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则t=4秒时,该物体所经过的路程为。3、若函数y=(m-2)xm-2+5x+1是关于的二次函数,则m的值为。二次函数的对称轴、顶点、最值(技法:如果解析式为顶点式y=a
2、(x-h)2+k,则最值为k;如果解析式为一般式y=ax2+bx+c则最值为1.抛物线y=2x2+4x+m2-m经过坐标原点,则m的值为。3.抛物线y=x2+3x的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限6.已知抛物线y=x2+(m-1)x-的顶点的横坐标是2,则m的值是_.7.抛物线y=x2+2x-3的对称轴是。8.若二次函数y=3x2+mx-3的对称轴是直线x=1,则m=。函数y=ax2+bx+c的图象和性质1.抛物线y=x2+4x+9的对称轴是。2.抛物线y=2x2-12x+25的开口方
3、向是,顶点坐标是。4.通过配方,写出下列函数的开口方向、对称轴和顶点坐标:(1)y=x2-2x+1;(2)y=-3x2+8x-2;(3)y=-x2+x-47.某商场以每台2500元进口一批彩电。如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?函数y=a(x-h)2的图象与性质1.填表:抛物线开口方向对称轴顶点坐标5.二次函数y=a(x-h)2的图象如图:已知a=,OA=OC,试求该抛物线的解
4、析式。二次函数的增减性1.二次函数y=3x2-6x+5,当x>1时,y随x的增大而;当x<1时,y随x的增大而;当x=1时,函数有最值是。2.已知函数y=4x2-mx+5,当x>-2时,y随x的增大而增大;当x<-2时,y随x的增大而减少;则x=1时,y的值为。3.已知二次函数y=x2-(m+1)x+1,当x≥1时,y随x的增大而增大,则m的取值范围是.二次函数的平移技法:只要两个函数的a相同,就可以通过平移重合。将二次函数一般式化为顶点式y=a(x-h)2+k,平移规律:左加右减,对x;上加下减,直接加减6.
5、抛物线y=-x2向左平移3个单位,再向下平移4个单位,所得到的抛物线的关系式为。7.抛物线y=2x2,,可以得到y=2(x+4}2-3。8.将抛物线y=x2+1向左平移2个单位,再向下平移3个单位,所得到的抛物线的关系式为。函数的图象特征与a、b、c的关系1.已知抛物线y=ax2+bx+c的图象如右图所示,则a、b、c的符号为( )A.a>0,b>0,c>0B.a>0,b>0,c=0C.a>0,b<0,c=0D.a>0,b<0,c<04.当b<0是一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标
6、系内的图象可能是()11.已知二次函数y=ax2+bx+c经过一、三、四象限(不经过原点和第二象限)则直线y=ax+bc不经过()A.第一象限B.第二象限C.第三象限D.第四象限二次函数与x轴、y轴的交点(二次函数与一元二次方程的关系)1.抛物线y=-3x2+2x-1的图象与x轴交点的个数是()A.没有交点B.只有一个交点C.有两个交点D.有三个交点1.如图所示,二次函数y=x2-4x+3的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为()A.6B.4C.3D.1若二次函数y=(m+5)x2+2(m+
7、1)x+m的图象全部在x轴的上方,则m的取值范围是2.已知抛物线y=x2-2x-8,(1)求证:该抛物线与x轴一定有两个交点;(2)若该抛物线与x轴的两个交点为A、B,且它的顶点为P,求△ABP的面积。函数解析式的求法一、已知抛物线上任意三点时,通常设解析式为一般式y=ax2+bx+c,然后解三元方程组求解;1.已知二次函数的图象经过A(0,3)、B(1,3)、C(-1,1)三点,求该二次函数的解析式。2.已知抛物线过A(1,0)和B(4,0)两点,交y轴于C点且BC=5,求该二次函数的解析式。二、已知抛物线的
8、顶点坐标,或抛物线上纵坐标相同的两点和抛物线上另一点时,通常设解析式为顶点式y=a(x-h)2+k求解。3.已知二次函数的图象的顶点坐标为(1,-6),且经过点(2,-8),求该二次函数的解析式。4.已知二次函数的图象的顶点坐标为(1,-3),且经过点P(2,0)点,求二次函数的解析式。三、已知抛物线与轴的交点的坐标时,通常设解析式为交点式y=a(x-x1)(x-x2)。5.二次函数的
此文档下载收益归作者所有