欢迎来到天天文库
浏览记录
ID:50102341
大小:80.00 KB
页数:12页
时间:2020-03-04
《二次函数题型分类复习总结.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二次函数分类复习与反馈二次函数的定义(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式)1、下列函数中,是二次函数的是.①y=x2-4x+1;②y=2x2;③y=2x2+4x;④y=-3x;⑤y=-2x-1;⑥y=mx2+nx+p;⑦y=4x;⑧y=-5x。2、在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则t=4秒时,该物体所经过的路程为。3、若函数y=(m2+2m-3)x2+4x+5是关于x的二次函数,则m的取值范围为。二次函数的对称轴、顶点、最值(方法:如果解析
2、式为顶点式y=a(x-h)2+k,则最值为k;如果解析式为一般式y=ax2+bx+c则最值为)1.抛物线y=2x2+4x+m2-m经过坐标原点,则m的值为。2.抛物y=x2+bx+c线的顶点坐标为(1,3),则b=,c=.3.抛物线y=x2+3x的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限4.已知抛物线y=x2+(m-1)x-的顶点的横坐标是2,则m的值是_.5.若二次函数y=3x2+mx-3的对称轴是直线x=1,则m=。6.当n=______,m=______时,函数y=(m+n)xn+(m-n)
3、x的图象是抛物线,且其顶点在原点,此抛物线的开口________.。7.已知二次函数y=x2-4x+m-3的最小值为3,则m=。函数y=ax2+bx+c的图象和性质12二次函数分类复习与反馈1.抛物线y=x2+4x+9的对称轴是。2.抛物线y=2x2-12x+25的开口方向是,顶点坐标是。3.试写出一个开口方向向上,对称轴为直线x=-2,且与y轴的交点坐标为(0,3)的抛物线的解析式。4.通过配方,写出下列函数的开口方向、对称轴和顶点坐标:(1)y=x2-2x+1;(2)y=-3x2+8x-2;(3)y=-x2+x
4、-4函数y=a(x-h)2的图象与性质1.填表:抛物线开口方向对称轴顶点坐标2.已知函数y=2x2,y=2(x-4)2,和y=2(x+1)2。(1)分别说出各个函数图象的开口方、对称轴和顶点坐标。(2)分析分别通过怎样的平移。可以由抛物线y=2x2得到抛物线y=2(x-4)2和y=2(x+1)2?3.试写出抛物线y=3x2经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标。(1)右移2个单位;(2)左移个单位;(3)先左移1个单位,再右移4个单位。12二次函数分类复习与反馈4.试说明函数y=(x-3)2的图象
5、特点及性质(开口、对称轴、顶点坐标、增减性、最值)。二次函数的增减性1.二次函数y=3x2-6x+5,当x>1时,y随x的增大而;当x<1时,y随x的增大而;当x=1时,函数有最值是。2.已知函数y=4x2-mx+5,当x>-2时,y随x的增大而增大;当x<-2时,y随x的增大而减少;则x=1时,y的值为。3.已知二次函数y=x2-(m+1)x+1,当x≥1时,y随x的增大而增大,则m的取值范围是.4.已知二次函数y=-x2+3x+的图象上有三点A(x1,y1),B(x2,y2),C(x3,y3)且36、x3,则y1,y2,y3的大小关系为.二次函数的平移技法:只要两个函数的a相同,就可以通过平移重合。将二次函数一般式化为顶点式y=a(x-h)2+k,平移规律:左加右减,对x;上加下减,直接加减6.抛物线y=-x2向左平移3个单位,再向下平移4个单位,所得到的抛物线的关系式为。7.抛物线y=2x2,,可以得到y=2(x+4}2-3。8.将抛物线y=x2+1向左平移2个单位,再向下平移3个单位,所得到的抛物线的关系式为。12二次函数分类复习与反馈函数的交点11.抛物线y=x2+7x+3与直线y=2x+9的交点坐标为。7、12.直线y=7x+1与抛物线y=x2+3x+5的图象有个交点。函数的的对称13.抛物线y=2x2-4x关于y轴对称的抛物线的关系式为。14.抛物线y=ax2+bx+c关于x轴对称的抛物线为y=2x2-4x+3,则a=b=c=函数的图象特征与a、b、c的关系1.已知抛物线y=ax2+bx+c的图象如右图所示,则a、b、c的符号为( )A.a>0,b>0,c>0B.a>0,b>0,c=0C.a>0,b<0,c=0D.a>0,b<0,c<03.抛物线y=ax2+bx+c中,b=4a,它的图象如图3,有以下结论:①c8、>0;②a+b+c>0③a-b+c>0④b2-4ac<0⑤abc<0;其中正确的为()A.①②B.①④C.①②③D.①③⑤4.当b<0是一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系内的图象可能是()12二次函数分类复习与反馈二次函数与x轴、y轴的交点(二次函数与一元二次方程的关系)1.如果二次函数y=x2+4x+c图象与x轴没有交点,其中c
6、x3,则y1,y2,y3的大小关系为.二次函数的平移技法:只要两个函数的a相同,就可以通过平移重合。将二次函数一般式化为顶点式y=a(x-h)2+k,平移规律:左加右减,对x;上加下减,直接加减6.抛物线y=-x2向左平移3个单位,再向下平移4个单位,所得到的抛物线的关系式为。7.抛物线y=2x2,,可以得到y=2(x+4}2-3。8.将抛物线y=x2+1向左平移2个单位,再向下平移3个单位,所得到的抛物线的关系式为。12二次函数分类复习与反馈函数的交点11.抛物线y=x2+7x+3与直线y=2x+9的交点坐标为。
7、12.直线y=7x+1与抛物线y=x2+3x+5的图象有个交点。函数的的对称13.抛物线y=2x2-4x关于y轴对称的抛物线的关系式为。14.抛物线y=ax2+bx+c关于x轴对称的抛物线为y=2x2-4x+3,则a=b=c=函数的图象特征与a、b、c的关系1.已知抛物线y=ax2+bx+c的图象如右图所示,则a、b、c的符号为( )A.a>0,b>0,c>0B.a>0,b>0,c=0C.a>0,b<0,c=0D.a>0,b<0,c<03.抛物线y=ax2+bx+c中,b=4a,它的图象如图3,有以下结论:①c
8、>0;②a+b+c>0③a-b+c>0④b2-4ac<0⑤abc<0;其中正确的为()A.①②B.①④C.①②③D.①③⑤4.当b<0是一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系内的图象可能是()12二次函数分类复习与反馈二次函数与x轴、y轴的交点(二次函数与一元二次方程的关系)1.如果二次函数y=x2+4x+c图象与x轴没有交点,其中c
此文档下载收益归作者所有