一对一辅导导数专题.doc

一对一辅导导数专题.doc

ID:57692035

大小:356.23 KB

页数:11页

时间:2020-09-01

一对一辅导导数专题.doc_第1页
一对一辅导导数专题.doc_第2页
一对一辅导导数专题.doc_第3页
一对一辅导导数专题.doc_第4页
一对一辅导导数专题.doc_第5页
资源描述:

《一对一辅导导数专题.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、学思教育中小学个性化教育专家学思教育学科教师辅导讲义学员姓名:张曼妮年级:高二辅导科目:数学学科教师:刘老师课题导数授课时间:2015-02-08备课时间:2015-02-01教学目标(1)理解平均变化率的概念;(2)了解瞬时速度、瞬时变化率的概念;(3)理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;(4)会求函数在某点的导数或瞬时变化率;(5)理解导数的几何意义。重点、难点1、导数的概念2、求导公式3、导数的几何意义考点及考试要求导数的几何意义、求导公式,求最值导数基础:1.导数(导函数的简称)的

2、定义:设是函数定义域的一点,如果自变量在处有增量,则函数值也引起相应的增量;比值称为函数在点到之间的平均变化率;如果极限存在,则称函数在点处可导,并把这个极限叫做在处的导数,记作或,即=.②以知函数定义域为,的定义域为,则与关系为.2.函数在点处连续与点处可导的关系:函数在点处连续是在点处可导的必要不充分条件.常用性质:①可导的奇函数函数其导函数为偶函数.学思教育中小学个性化教育专家②可导的偶函数函数其导函数为奇函数.3.导数的几何意义:函数在点处的导数的几何意义就是曲线在点处的切线的斜率,也就是说,曲线在点P处的切

3、线的斜率是,切线方程为4.求导数的四则运算法则:(为常数)②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.I.(为常数)()II.5.复合函数的求导法则:或6.函数单调性:⑴函数单调性的判定方法:设函数在某个区间内可导,如果>0,则为增函数;如果<0,则为减函数学思教育中小学个性化教育专家注:①是f(x)递增的充分条件,但不是必要条件,如在上并不是都有,有一个点例外即x=0时f(x)=0,同样是f(x)7.极值的判别方法:(极值是在附近所有的点,都有<,则是函数的

4、极大值,极小值同理)当函数在点处连续时,①如果在附近的左侧>0,右侧<0,那么是极大值;②如果在附近的左侧<0,右侧>0,那么是极小值.考点1导数的概念对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念.例1.(2006年辽宁卷)与方程的曲线关于直线对称的曲线的方程为A.B.C.D.[考查目的]本题考查了方程和函数的关系以及反函数的求解.同时还考查了转化能力[解答过程],,即:,所以.例2.(2006年湖南卷)设函数,集合M=,P=,若MP,则实数a的取值范围是()A.(-

5、∞,1)B.(0,1)C.(1,+∞)D.[1,+∞)[考查目的]本题主要考查函数的导数和集合等基础知识的应用能力.[解答过程]由综上可得MP时,学思教育中小学个性化教育专家考点2曲线的切线(1)关于曲线在某一点的切线求曲线y=f(x)在某一点P(x,y)的切线,即求出函数y=f(x)在P点的导数就是曲线在该点的切线的斜率.(2)关于两曲线的公切线若一直线同时与两曲线相切,则称该直线为两曲线的公切线.典型例题例3.(2004年重庆卷)已知曲线y=x3+,则过点P(2,4)的切线方程是_____________.思路启

6、迪:求导来求得切线斜率.解答过程:y′=x2,当x=2时,y′=4.∴切线的斜率为4.∴切线的方程为y-4=4(x-2),即y=4x-4.例4.(2006年安徽卷)若曲线的一条切线与直线垂直,则的方程为()A.B.C.D.[考查目的]本题主要考查函数的导数和直线方程等基础知识的应用能力.[解答过程]与直线垂直的直线为,即在某一点的导数为4,而,所以在(1,1)处导数为4,此点的切线为.例5.(2006年重庆卷)过坐标原点且与x2+y2-4x+2y+=0相切的直线的方程为()A.y=-3x或y=xB.y=-3x或y=-

7、xC.y=-3x或y=-xD.y=3x或y=x[考查目的]本题主要考查函数的导数和圆的方程、直线方程等基础知识的应用能力.[解答过程]解法1:设切线的方程为又学思教育中小学个性化教育专家故选A.解法2:由解法1知切点坐标为由例6.已知两抛物线,取何值时,有且只有一条公切线,求出此时公切线的方程.思路启迪:先对求导数.解答过程:函数的导数为,曲线在点P()处的切线方程为,即 ①曲线在点Q的切线方程是即 ②若直线是过点P点和Q点的公切线,则①式和②式都是的方程,故得,消去得方程,若△=,即时,解得,此时点P、Q重合.∴当

8、时,和有且只有一条公切线,由①式得公切线方程为.考点3导数的应用学思教育中小学个性化教育专家中学阶段所涉及的初等函数在其定义域内都是可导函数,导数是研究函数性质的重要而有力的工具,特别是对于函数的单调性,以“导数”为工具,能对其进行全面的分析,为我们解决求函数的极值、最值提供了一种简明易行的方法,进而与不等式的证明,讨论方程解的情况等问题结合起

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。