最新高考数学二轮复习学案:空间几何体的三视图、表面积与体积 含解析.doc

最新高考数学二轮复习学案:空间几何体的三视图、表面积与体积 含解析.doc

ID:57661538

大小:996.00 KB

页数:16页

时间:2020-08-30

最新高考数学二轮复习学案:空间几何体的三视图、表面积与体积 含解析.doc_第1页
最新高考数学二轮复习学案:空间几何体的三视图、表面积与体积 含解析.doc_第2页
最新高考数学二轮复习学案:空间几何体的三视图、表面积与体积 含解析.doc_第3页
最新高考数学二轮复习学案:空间几何体的三视图、表面积与体积 含解析.doc_第4页
最新高考数学二轮复习学案:空间几何体的三视图、表面积与体积 含解析.doc_第5页
资源描述:

《最新高考数学二轮复习学案:空间几何体的三视图、表面积与体积 含解析.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、专题四 立体几何与空间向量第1讲 空间几何体的三视图、表面积与体积年份卷别考查内容及考题位置命题分析2018卷Ⅰ空间几何体的三视图及侧面展开问题·T71.“立体几何”在高考中一般会以“两小一大”或“一小一大”的命题形式出现,这“两小”或“一小”主要考查三视图,几何体的表面积与体积,空间点、线、面的位置关系(特别是平行与垂直).2.考查一个小题时,此小题一般会出现在第4~8题的位置上,难度一般;考查两个小题时,其中一个小题难度一般,另一个小题难度稍高,一般会出现在第10~16题的位置上,此小题虽然难度稍高,主要体现在计算量上,但仍是对基础知识、基本公式的考查.空间几何体的截

2、面问题·T12卷Ⅱ圆锥的侧面积·T16卷Ⅲ三视图的识别·T3 三棱锥的体积及外接球问题·T102017卷Ⅰ空间几何体的三视图与直观图、面积的计算·T7卷Ⅱ空间几何体的三视图及组合体体积的计算·T4卷Ⅲ球的内接圆柱、圆柱的体积的计算·T82016卷Ⅰ有关球的三视图及表面积的计算·T6卷Ⅱ空间几何体的三视图及组合体表面积的计算·T6卷Ⅲ空间几何体的三视图及组合体表面积的计算·T9直三棱柱的体积最值问题·T10   空间几何体的三视图(基础型)一个物体的三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)

3、视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.由三视图还原到直观图的三个步骤(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.[注意] 在读图或者画空间几何体的三视图时,应注意三视图中的实线和虚线.[考法全练]1.(2018·高考全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( 

4、 )解析:选A.由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A.2.(2018·高考全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为(  )A.2B.2C.3D.2解析:选B.由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为2,底面周长为16.画出该圆柱的侧面展开图,如图②所示,连接MN,则MS=2,SN=4,则从M到N的路径中,最短路径的长度为==2.故选B.3.把边长为1的正方

5、形ABCD沿对角线BD折起,使得平面ABD⊥平面CBD,形成的三棱锥CABD的正视图与俯视图如图所示,则侧视图的面积为(  )A.B.C.D.解析:选D.由三棱锥CABD的正视图、俯视图得三棱锥CABD的侧视图为直角边长是的等腰直角三角形,如图所示,所以三棱锥CABD的侧视图的面积为,故选D.4.(2018·长春质量监测(二))如图,网格纸上小正方形的边长为1,粗线条画出的是一个三棱锥的三视图,则该三棱锥中最长棱的长度为(  )A.2B.C.2D.3解析:选D.如图,三棱锥ABCD即为所求几何体,根据题设条件,知辅助的正方体棱长为2,CD=1,BD=2,BC=,AC=2,

6、AB=3,AD=,则最长棱为AB,长度为3.5.(2018·石家庄质量检测(一))如图,网格纸上的小正方形的边长为1,粗线表示的是某三棱锥的三视图,则该三棱锥的四个面中,最小面的面积是(  )A.2B.2C.2D.解析:选C.在正方体中还原该几何体,如图中三棱锥DABC所示,其中正方体的棱长为2,则S△ABC=2,S△DBC=2,S△ADB=2,S△ADC=2,故该三棱锥的四个面中,最小面的面积是2,选C.   空间几何体的表面积和体积(综合型)柱体、锥体、台体的侧面积公式(1)S柱侧=ch(c为底面周长,h为高).(2)S锥侧=ch′(c为底面周长,h′为斜高).(3)

7、S台侧=(c+c′)h′(c′,c分别为上下底面的周长,h′为斜高).柱体、锥体、台体的体积公式(1)V柱体=Sh(S为底面面积,h为高).(2)V锥体=Sh(S为底面面积,h为高).(3)V台=(S++S′)h(S,S′分别为上下底面面积,h为高)(不要求记忆).[典型例题]命题角度一 空间几何体的表面积(1)(2018·潍坊模拟)某几何体的三视图如图所示,则该几何体的表面积为(  )A.4+2      B.4+4C.6+2D.6+4(2)(2018·合肥第一次质量检测)如图,网格纸上小正方形的边长为1,粗线画出的是某几何

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。