欢迎来到天天文库
浏览记录
ID:57600426
大小:1.25 MB
页数:24页
时间:2020-08-28
《2019年数学新同步湘教版选修2-1讲义+精练:第3章 3.1 空间中向量的概念和运算 Word版含解析.pdf》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、3.1空间中向量的概念和运算第一课时空间中向量的概念和线性运算[读教材·填要点]1.向量的概念既有大小又有方向的量称为向量.2.用有向线段表示向量要表示向量a,可以从任意一点A出发作有向量线段AB,使AB的方向与a相同,长―→度
2、AB
3、等于a的模,则有向线段AB表示向量a,记为a=AB.3.空间向量加法的运算律(1)a+b=b+a.(加法交换律)(2)(a+b)+c=a+(b+c).(加法结合律)4.向量与实数相乘(1)向量与实数相乘:任何一个向量a都可以看作某个平面上的向量,它与实数λ相乘可以按照平面向量与实数相乘的法则进行.(2)①λ
4、(a+b)=λa+λb.(对向量加法的分配律)②(λ+λ)a=λa+λa.(对实数加法的分配律)1212[小问题·大思维]1.空间向量的定义及表示方法,同平面向量的定义及表示方法有区别吗?提示:空间向量与平面向量没有本质区别,定义及表示方法都一样.2.在空间中,所有单位向量平移到同一起点后,终点轨迹是什么图形?提示:因为单位向量的模均等于1,那么当所有向量移到同一起点后,终点轨迹是一个球面.3.空间两向量的加减法与平面内两向量的加减法完全相同吗?提示:因为空间中任意两个向量均可平移到同一平面内,所以空间向量与平面向量均可用三角形或平行四边
5、形法则,是相同的.4.两个向量a,b共线是两个向量共面的什么条件?提示:a,b共线时,这两个向量一定共面;若a与b共面,a与b所在的直线可能相交,所以a与b共线是a与b共面的充分不必要条件.空间向量的线性运算已知ABCD为正方形,P是ABCD所在平面外一点,P在平面ABCD上的射影恰好是正方形ABCD的中心O.Q是CD的中点,求下列各式中x,y的值:―→―→―→―→(1)OQ=PQ+xPC+yPA;―→―→―→―→(2)PA=xPO+yPQ+PD.[自主解答]如图,―→―→―→(1)∵OQ=PQ-PO―→1―→―→=PQ-(PA+PC)2
6、―→1―→1―→=PQ-PA-PC,221∴x=y=-.2―→―→―→―→―→―→(2)∵PA+PC=2PO,∴PA=2PO-PC.―→―→―→―→―→―→又∵PC+PD=2PQ,∴PC=2PQ-PD.―→―→―→―→―→―→―→从而有PA=2PO-(2PQ-PD)=2PO-2PQ+PD.∴x=2,y=-2.―→―→―→―→本例中,若PQ=xBA+yBC+zBP,则x,y,z为何值?―→―→―→―→―→―→1―→解:∵PQ=PB+BC+CQ=-BP+BC+CD2―→―→1―→1―→―→―→=-BP+BC+BA=BA+BC-BP,221∴x
7、=,y=1,z=-1.2利用多边形法则是处理此类问题的基本技巧,一般地,可以找到的封闭图形不是唯一的,但无论哪一种途径,结果应是唯一的.应用向量的加减法法则和数乘运算表示向量是向量在几何中应用的前提,一定要熟练掌握.1.如图所示,在三棱柱ABC-ABC中,M是BB的中点,化简下列1111各式,并在图中标出化简得到的向量:―→―→(1)CB+BA;1―→―→1―→(2)AC+CB+AA;21―→―→―→(3)AA-AC-CB.1―→―→―→解:(1)CB+BA=CA.11(2)因为M是BB的中点,1―→1―→所以BM=BB.21―→―→―→
8、―→1―→―→―→―→又AA=BB,所以AC+CB+AA=AB+BM=AM.1121―→―→―→―→―→―→(3)AA-AC-CB=CA-CB=BA.111―→―→―→向量CA,AM,BA如图所示.11共线问题空间四边形ABCD中,E,H分别是AB,AD的中点,F,―→2―→―→2―→―→―→G分别在边CB,CD上,且CF=CB,CG=CD.判断EH与FG是33否共线?若共线,并判断四边形EFGH的形状.[自主解答]根据题意,―→―→―→―→―→―→∵EH=AH-AE,BD=AD-AB,―→1―→―→1―→又∵AH=AD,∴AE=AB.2
9、2―→1―→∴EH=BD.①2―→―→―→―→―→―→∵FG=CG-CF,BD=CD-CB,―→2―→―→2―→又∵CG=CD,CF=CB,33―→2―→―→2―→∴FG=(CD-CB)=BD.②33―→3―→由①②得,EH=FG.4―→―→∴EH与FG共线.―→―→―→∴EH∥FG,且
10、EH
11、≠
12、FG
13、.又∵点F不在直线EH上,∴EH∥FG且
14、EH
15、≠
16、FG
17、.∴四边形EFGH为梯形.判断空间图形中两个向量共线的步骤为:(1)作出空间图形;(2)结合空间图形,充分利用空间向量运算法则,用空间中的向量表示a与b;(3)化简得出a=xb,从
18、而得出a∥b,即a与b共线.本例中,如果F,G分别是边CB,CD的中点,你能判断出EFGH是什么四边形吗?解:若F,G分别是边BC,CD的中点,―→―→―→―→―→―→∵EH=AH-AE,BD
此文档下载收益归作者所有