高考大题--三角函数题型汇总精华(含答案解释).pdf

高考大题--三角函数题型汇总精华(含答案解释).pdf

ID:57598934

大小:285.18 KB

页数:6页

时间:2020-08-28

高考大题--三角函数题型汇总精华(含答案解释).pdf_第1页
高考大题--三角函数题型汇总精华(含答案解释).pdf_第2页
高考大题--三角函数题型汇总精华(含答案解释).pdf_第3页
高考大题--三角函数题型汇总精华(含答案解释).pdf_第4页
高考大题--三角函数题型汇总精华(含答案解释).pdf_第5页
资源描述:

《高考大题--三角函数题型汇总精华(含答案解释).pdf》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、精品文档【模拟演练】π1、[2014·江西卷16]已知函数f(x)=(a+2cos2x)cos(2x+θ)为奇函数,且f=0,4其中a∈R,θ∈(0,π).α2ππ(1)求a,θ的值;(2)若f=-,α∈,π,求sinα+的值.4523π2、[2014·北京卷16]函数f(x)=3sin2x+的部分图像如图所示.6(1)写出f(x)的最小正周期及图中x,y的值;00ππ(2)求f(x)在区间-,-上的最大值和最小值.2123、[2014·福建卷18

2、]已知函数f(x)=2cosx(sinx+cosx).5π(1)求f的值;(2)求函数f(x)的最小正周期及单调递增区间.44、(06湖南)如图,D是直角△ABC斜边BC上一点,AB=AD,记∠CAD=,∠ABC=.(1)证明sincos20;(2)若AC=3DC,求的值.AαβBDC图1。欢迎下载精品文档135、(07福建)在△ABC中,tanA,tanB.45(Ⅰ)求角C的大小;(Ⅱ)若△ABC最大边的边长为17,求最小边的边长.6、(07浙江)已知△ABC的周长为21,且sin

3、AsinB2sinC.1(I)求边AB的长;(II)若△ABC的面积为sinC,求角C的度数.67、(07山东)如图,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于A处时,1乙船位于甲船的北偏西105的方向B处,此时两船相距201海里.当甲船航行20分钟到达A处时,乙船航行到甲船的2北偏西120方向的B处,此时两船相距102海里,2问乙船每小时航行多少海里?8、(2013年全国新课标2)在ABC中,角A,B,C所对的边分别为a,b,c,已知abcosCcsinB(1

4、)求B;(2)若b=2,求S的最大值。ABC2欢迎下载。精品文档9、(2016年北京高考)在ABC中,a2c2b22ac(1)求角B的大小;(2)求2cosAcosC的最大值。10、(2016绥化模拟)在ABC中,cosC是方程2x23x2的一个根。(1)求角C;(2)当a+b=10时,求ABC周长的最小值。11、(2014年陕西高考)在ABC中,角A,B,C所对的边分别为a,b,c。(1)若a,b,c成等差数列,证明sinA+sinC=2sin(A+C);(2)若a,b,c成等比数列,求co

5、sB的最小值。【模拟演练参考答案】1、解:(1)因为f(x)=(a+2cos2x)cos(2x+θ)为奇函数,而y=a+2cos2x为偶函数,所以1y=cos2x为奇函数,又0,,得.所以fx=sin2x(a2cos2x).12由f0,得-(a+1)=0,即a1.41124(2)由(1)得:fxsin4x,因为fsin,得sin,242553。欢迎下载精品文档3433又,,所以cos,因此si

6、nsincossincos.253331072、解:(I)fx的最小正周期为,x,y3.0605(II)因为x[,],所以2x[,0],21266于是当2x0,即x时,fx取得最大值0;612当2x,即x时,fx取得最小值3.62355553、解:(1)f()2cos(sincos)2cos(sincos)24444444(2)因为f(x)2sinxcosx2cos2xsin2xco

7、s2x12sin(2x)1.42所以T.23由2k2x2k,kZ,得kxk,kZ,242883所以f(x)的单调递增区间为[k,k],kZ.884、[解](1).如图3,Q(2)2,sinsin(2)cos2,222即sincos20.(2).在ABC中,由正弦定理得DCACDC3DC,.sin3sinsinsin()sinsin由(1)得sincos2,sin

8、3cos23(12sin2),33即23sin2sin30.解得sin或sin.233Q0,sin,.2234欢迎下载。精品文档5、解:(Ⅰ)QCπ(AB),13453tanCtan(AB)1.又Q0Cπ,Cπ.1341453(Ⅱ)QC,AB边最大,即AB1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。