1、第十一讲 二次函数及其应用第1课时 二次函数1.(2017随州中考)对于二次函数y=x2-2mx-3、下列结论错误的是( C )A.它的图象与x轴有两个交点B.方程x2-2mx=3的两根之积为-3C.它的图象的对称轴在y轴的右侧D.x<m时、y随x的增大而减小2.在下列二次函数中、其图象对称轴为x=-2的是( A )A.y=(x+2)2 B.y=2x2-2C.y=-2x2-2D.y=2(x-2)23.二次函数y=ax2+bx+c的图象如图、点C在y轴的正半轴上、且OA=OC、则( A )A.ac+1=bB.
2、ab+1=cC.bc+1=aD.以上都不是,(第3题图)) ,(第4题图))4.(2017齐齐哈尔中考)如图、抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-2、与x轴的一个交点在(-3、0)和(-4、0)之间、其部分图象如图所示、则下列结论:①4a-b=0;②c<0;③-3a+c>0;④4a-2b>at2+bt(t为实数);⑤点、、是该抛物线上的点、则y1<y2<y3、正确的个数有( B )A.4个 B.3个 C.2个 D.1个5.(2017安顺中考)二次函数y=ax2+bx+c(a≠0
3、)的图象如图、给出下列四个结论:①4ac-b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠1)、其中结论正确的个数是( C )A.1B.2C.3D.4,(第5题图)) ,(第6题图))6.如图为二次函数y=ax2+bx+c(a≠0)的图象、则下列说法:①a>0;②2a+b=0;③a+b+c>0;④当-1<x<3时、y>0其中正确的个数为( C )A.1B.2C.3D.47.若抛物线y=(x-m)2+(m+1)的顶点在第一象限、则m的取值范围为( B )A.m>1 B.m>
4、0C.m>-1D.-1<m<08.(2017扬州中考)如图、已知△ABC的顶点坐标分别为A(0、2)、B(1、0)、C(2、1)、若二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点、则实数b的取值范围是( C )A.b≤-2B.b<-2C.b≥-2D.b>-29.(2017枣庄中考)已知函数y=ax2-2ax-1(a是常数、a≠0)、下列结论正确的是( D )A.当a=1时、函数图象经过点(-1、1)B.当a=-2时、函数图象与x轴没有交点C.若a<0、函数图象的顶点始终在x轴的下方D.若a>0、
5、则当x≥1时、y随x的增大而增大10.(2017鄂州中考)如图抛物线y=ax2+bx+c的图象交x轴于A(-2、0)和点B、交y轴负半轴于点C、且OB=OC.下列结论:①2b-c=2;②a=;③ac=b-1;④>0.其中正确的个数有( C )A.1个B.2个C.3个D.4个11.(2017陕西中考)已知抛物线y=x2-2mx-4(m>0)的顶点M关于坐标原点O的对称点为M′、若点M′在这条抛物线上、则点M的坐标为( C )A.(1、-5)B.(3、-13)C.(2、-8)D.(4、-20)12.抛物线y=x2+2