沪科版八年级数学下册课件-正方形.ppt

沪科版八年级数学下册课件-正方形.ppt

ID:57372733

大小:1.78 MB

页数:43页

时间:2020-08-13

沪科版八年级数学下册课件-正方形.ppt_第1页
沪科版八年级数学下册课件-正方形.ppt_第2页
沪科版八年级数学下册课件-正方形.ppt_第3页
沪科版八年级数学下册课件-正方形.ppt_第4页
沪科版八年级数学下册课件-正方形.ppt_第5页
资源描述:

《沪科版八年级数学下册课件-正方形.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、19.3.3正方形第19章四边形优质课件导入新课讲授新课当堂练习课堂小结八年级数学下(HK)教学课件学习目标1.探索并证明正方形的性质,并了解平行四边形、矩形、菱形之间的联系和区别;(重点、难点)2.探索并证明正方形的判定,并了解平行四边形、矩形、菱形之间的联系和区别;(重点、难点)3.会运用正方形的性质及判定条件进行有关的论证和计算.(难点)导入新课观察下面图形,正方形是我们熟悉的几何图形,在生活中无处不在.情景引入你还能举出其他的例子吗?讲授新课矩形〃〃问题1:矩形怎样变化后就成了正方形呢?你有什么发现?问题引入正方形的性质一正方形问题2菱形怎样变化

2、后就成了正方形呢?你有什么发现?正方形邻边相等矩形〃〃正方形〃〃菱形一个角是直角正方形∟正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫正方形.归纳总结已知:如图,四边形ABCD是正方形.求证:正方形ABCD四边相等,四个角都是直角.ABCD证明:∵四边形ABCD是正方形.∴∠A=90°,AB=AC(正方形的定义).又∵正方形是平行四边形.∴正方形是矩形(矩形的定义),正方形是菱形(菱形的定义).∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD.证一证已知:如图,四边形ABCD是正方形.对角线AC、BD相交于点O.求证:AO=BO=CO

3、=DO,AC⊥BD.ABCDO证明:∵正方形ABCD是矩形,∴AO=BO=CO=DO.∵正方形ABCD是菱形.∴AC⊥BD.思考请同学们拿出准备好的正方形纸片,折一折,观察并思考.正方形是不是轴对称图形?如果是,那么对称轴有几条?对称性:.对称轴:.轴对称图形4条ABCD矩形菱形正方形平行四边形正方形是特殊的平行四边形,也是特殊的矩形,也是特殊的菱形.所以矩形、菱形有的性质,正方形都有.平行四边形、矩形、菱形、正方形之间关系:性质:1.正方形的四个角都是直角,四条边相等.2.正方形的对角线相等且互相垂直平分.归纳总结例1求证:正方形的两条对角线把这个正方

4、形分成四个全等的等腰直角三角形.ADCBO已知:如图,四边形ABCD是正方形,对角线AC、BD相交于点O.求证:△ABO、△BCO、△CDO、△DAO是全等的等腰直角三角形.证明:∵四边形ABCD是正方形,∴AC=BD,AC⊥BD,AO=BO=CO=DO.∴△ABO、△BCO、△CDO、△DAO都是等腰直角三角形,并且△ABO≌△BCO≌△CDO≌△DAO.典例精析例2如图,在正方形ABCD中,ΔBEC是等边三角形,求证:∠EAD=∠EDA=15°.证明:∵ΔBEC是等边三角形,∴BE=CE=BC,∠EBC=∠ECB=60°,∵四边形ABCD是正方形,∴

5、AB=BC=CD,∠ABC=∠DCB=90°,∴AB=BE=CE=CD,∠ABE=∠DCE=30°,∴△ABE,△DCE是等腰三角形,∴∠BAE=∠BEA=∠CDE=∠CED=75°,∴∠EAD=∠EDA=90°-75°=15°.【变式题1】四边形ABCD是正方形,以正方形ABCD的一边作等边△ADE,求∠BEC的大小.解:当等边△ADE在正方形ABCD外部时,如图①,AB=AE,∠BAE=90°+60°=150°.∴∠AEB=15°.同理可得∠DEC=15°.∴∠BEC=60°-15°-15°=30°;当等边△ADE在正方形ABCD内部时,如图②,AB

6、=AE,∠BAE=90°-60°=30°,∴∠AEB=75°.同理可得∠DEC=75°.∴∠BEC=360°-75°-75°-60°=150°.综上所述,∠BEC的大小为30°或150°.易错提醒:因为等边△ADE与正方形ABCD有一条公共边,所以边相等.本题分两种情况:等边△ADE在正方形的外部或在正方形的内部.【变式题2】如图,在正方形ABCD内有一点P满足AP=AB,PB=PC,连接AC、PD.(1)求证:△APB≌△DPC;解:∵四边形ABCD是正方形,∴∠ABC=∠DCB=90°.∵PB=PC,∴∠PBC=∠PCB.∴∠ABC-∠PBC=∠DC

7、B-∠PCB,即∠ABP=∠DCP.又∵AB=DC,PB=PC,∴△APB≌△DPC.证明:∵四边形ABCD是正方形,∴∠BAC=∠DAC=45°.∵△APB≌△DPC,∴AP=DP.又∵AP=AB=AD,∴DP=AP=AD.∴△APD是等边三角形.∴∠DAP=60°.∴∠PAC=∠DAP-∠DAC=15°.∴∠BAP=∠BAC-∠PAC=30°.∴∠BAP=2∠PAC.(2)求证:∠BAP=2∠PAC.例3如图,在正方形ABCD中,P为BD上一点,PE⊥BC于E,PF⊥DC于F.试说明:AP=EF.ABCDPEF解:连接PC,AC.又∵PE⊥BC,PF

8、⊥DC,∵四边形ABCD是正方形,∴∠FCE=90°,AC垂直平分BD,∴四边形

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。