欢迎来到天天文库
浏览记录
ID:57283076
大小:70.00 KB
页数:6页
时间:2020-08-09
《数列与不等式交汇题型.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、数列与不等式的交汇题型分析及解题策略数列与不等式交汇主要以压轴题的形式出现,试题还可能涉及到与导数、函数等知识综合一起考查.主要考查知识重点和热点是数列的通项公式、前n项和公式以及二者之间的关系、等差数列和等比数列、归纳与猜想、数学归纳法、比较大小、不等式证明、参数取值范围的探求,在不等式的证明中要注意放缩法的应用.此类题型主要考查学生对知识的灵活变通、融合与迁移,考查学生数学视野的广度和进一步学习数学的潜能.如考查数列与不等式恒成立条件下的参数问题、考查数列与不等式交汇的探索性问题等等.杂在近年高考中,比较新颖的数列与不等式选择题或填空题一定会出现
2、.数列解答题的命题热点是与不等式交汇,呈现递推关系的综合性试题.其中,以函数与数列、不等式为命题载体,有着高等数学背景的数列与不等式的交汇试题是未来高考命题的一个新的亮点,而命题的冷门则是数列与不等式综合的应用性解答题.要掌握考试动态必先了解考试要求,知己知彼方能百战不殆:1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.2.理解等差数列的概念.掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题.3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题
3、。4.理解不等式的性质及其证明.5.掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.6.掌握分析法、综合法、比较法证明简单的不等式.7.掌握简单不等式的解法及理解不等式│a│-│b│≤│a+b│≤│a│+│b│.近年数列与不等式交汇题考察点:1.以客观题考查不等式的性质、解法与数列、等差数列、等比数列的简单交汇.2.以解答题以中档题或压轴题的形式考查数列与不等式的交汇,还有可能涉及到导数、解析几何、三角函数的知识等,深度考查不等式的证明(主要比较法、综合法、分析法、放缩法、数学归纳法、反证法)和逻辑推理能力及分类
4、讨论、化归的数学思想,试题新颖别致,难度相对较大.3.将数列与不等式的交汇渗透于递推数列及抽象数列中进行考查,主要考查转化及方程的思想.典例分析题型一 求有数列参与的不等式恒成立条件下参数问题求得数列与不等式绫结合恒成立条件下的参数问题主要两种策略:(1)若函数f(x)在定义域为D,则当x∈D时,有f(x)≥M恒成立Ûf(x)min≥M;f(x)≤M恒成立Ûf(x)max≤M;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得.【例1】 等比数列{an}的公比q>1,第17项的平方等于第24项,求使a1+a2+…+an>++…+恒成
5、立的正整数n的取值范围.【分析】 利用条件中两项间的关系,寻求数列首项a1与公比q之间的关系,再利用等比数列前n项公式和及所得的关系化简不等式,进而通过估算求得正整数n的取值范围.【解】 由题意得:(a1q16)2=a1q23,∴a1q9=1.由等比数列的性质知:数列{}是以为首项,以为公比的等比数列,要使不等式成立,则须>,把a=q-18代入上式并整理,得q-18(qn-1)>q(1-),qn>q19,∵q>1,∴n>19,故所求正整数的取值范围是n≥20.【点评】 本题解答数列与不等式两方面的知识都用到了,主要体现为用数列知识化简,用不等式知识求
6、得最后的结果.本题解答体现了转化思想、方程思想及估算思想的应用.【例2】 设数列{an}的前项和为Sn.已知a1=a,an+1=Sn+3n,n∈N*.(Ⅰ)设bn=Sn-3n,求数列{bn}的通项公式;(Ⅱ)若an+1≥an,n∈N*,求a的取值范围.【分析】 第(Ⅰ)小题利用Sn与an的关系可求得数列的通项公式;第(Ⅱ)小题将条件an+1≥an转化为关于n与a的关系,再利用a≤f(n)恒成立等价于a≤f(n)min求解.【解】 (Ⅰ)依题意,Sn+1-Sn=an+1=Sn+3n,即Sn+1=2Sn+3n,由此得Sn+1-3n+1=2(Sn-3n).
7、因此,所求通项公式为bn=Sn-3n=(a-3)2n-1,n∈N*,①(Ⅱ)由①知Sn=3n+(a-3)2n-1,n∈N*,于是,当n≥2时,an=Sn-Sn-1=3n+(a-3)2n-1-3n-1-(a-3)2n-2=2×3n-1+(a-3)2n-2,an+1-an=4×3n-1+(a-3)2n-2=2n-2·[12·()n-2+a-3],当n≥2时,an+1≥an,即2n-2·[12·()n-2+a-3]≥0,12·()n-2+a-3≥0,∴a≥-9,综上,所求的a的取值范围是[-9,+∞].【点评】 一般地,如果求条件与前n项和相关的数列的通项
8、公式,则可考虑Sn与an的关系求解.本题求参数取值范围的方法也一种常用的方法,应当引起重视.题型二 数列参与
此文档下载收益归作者所有