轴对称与中心对称课件.pptx

轴对称与中心对称课件.pptx

ID:57253604

大小:3.36 MB

页数:36页

时间:2020-08-03

轴对称与中心对称课件.pptx_第1页
轴对称与中心对称课件.pptx_第2页
轴对称与中心对称课件.pptx_第3页
轴对称与中心对称课件.pptx_第4页
轴对称与中心对称课件.pptx_第5页
资源描述:

《轴对称与中心对称课件.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、轴对称与中心对称考点聚焦回归教材归类探究中考预测轴对称与中心对称考点聚焦归类探究考点1轴对称与轴对称图形考点聚焦回归教材中考预测轴对称轴对称图形定义把一个图形沿着某一条直线折叠,如果它能够与另一个图形____,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.折叠后重合的点是对应点,叫对称点如果一个图形沿某一直线对折后,直线两旁的部分能够互相重合,这个图形叫做____________,这条直线叫做它的对称轴.这时我们也说这个图形关于这条直线(成轴)对称区别轴对称是指________全等图形之间的相互位置关系轴对称图形是指具有特殊形状的_

2、_______图形重合轴对称图形两个一个轴对称与中心对称考点聚焦归类探究回归教材中考预测联系①如果把轴对称的两个图形看成一个整体(一个图形),那么这个图形是轴对称图形;②如果把一个轴对称图形中对称的部分看成是两个图形,那么它们成轴对称轴对称的性质(1)对称点的连线被对称轴________(2)对应线段________(3)对应线段或延长线的交点在________上(4)成轴对称的两个图形________垂直平分相等对称轴全等轴对称与中心对称考点聚焦归类探究回归教材中考预测考点2中心对称与中心对称图形中心对称中心对称图形定义把一个图形绕着某一点

3、旋转________后,如果它能与另一个图形________,那么就说这两个图形关于这个点成中心对称,该点叫做________把一个图形绕着某一点旋转________,如果旋转后的图形能够与原来的图形重合,那么我们把这个图形叫中心对称图形,这个点叫做________区别中心对称是指两个全等图形之间的相互位置关系中心对称图形是指具有特殊形状的一个图形180°重合对称中心180°对称中心轴对称与中心对称考点聚焦归类探究回归教材中考预测联系①如果把中心对称的两个图形看成一个整体(一个图形),那么这个图形是中心对称图形;②如果把一个中心对称图形中对称

4、的部分看成是两个图形,那么它们成中心对称中心对称的性质(1)中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心________(2)成中心对称的两个图形________平分全等轴对称与中心对称探究一轴对称图形与中心对称图形的概念命题角度:1.轴对称的定义,轴对称图形的判断;2.中心对称的定义,中心对称图形的判断.考点聚焦归类探究回归教材中考预测归类探究例1[2013·泰州]下列标志图中,既是轴对称图形,又是中心对称图形的是()图32-1B轴对称与中心对称(1)把所要判断的图形沿一条直线折叠后,直线两旁的部分能够互相重合的图形是轴

5、对称图形;(2)把所要判断的图形绕着某个点旋转180°后能与自身重合的图形是中心对称图形.考点聚焦归类探究回归教材中考预测轴对称与中心对称探究二图形的折叠与轴对称命题角度:图形的折叠与轴对称的关系.考点聚焦归类探究回归教材中考预测例2[2013·莱芜]如图32-2,矩形ABCD中,AB=1,E、F分别为AD、CD的中点,沿BE将△ABE折叠,若点A恰好落在BF上,则AD=________.图32-2轴对称与中心对称考点聚焦归类探究回归教材中考预测解 析轴对称与中心对称考点聚焦归类探究回归教材中考预测解 析轴对称与中心对称图形折叠的本质是轴对称

6、,折叠前后的两个部分全等.考点聚焦归类探究回归教材中考预测轴对称与中心对称探究三与轴对称或中心对称有关的作图问题例3[2013·钦州]如图32-3,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.命题角度:1.利用轴对称的性质作图;2.利用中心对称的性质作图;3.利用轴对称或中心对称的性质设计图案.图32-3轴对称与中心对称考点聚焦归类探究回归教材

7、中考预测解轴对称与中心对称此类作图问题的关键是根据轴对称与中心对称坐标特征求出对称点的坐标.考点聚焦归类探究回归教材中考预测轴对称与中心对称“线路最短”问题的拓展创新教材母题北师大版八上P95问题解决第13题回归教材考点聚焦归类探究回归教材中考预测如图32-4,甲、乙两个单位分别位于一条封闭街道的两旁,现准备合作修建一座过街天桥,问:(1)桥建在何处才能使由甲到乙的路线最短?注意,桥必须与街道垂直.(2)桥建在何处才能使甲、乙到桥的距离相等?图32-4轴对称与中心对称考点聚焦归类探究回归教材中考预测轴对称与中心对称考点聚焦归类探究回归教材中考

8、预测中考预测轴对称与中心对称考点聚焦归类探究回归教材中考预测点 析最短距离问题是勾股定理在实际生活中的具体应用,一般地,最短距离问题可以利用“两点之间线段最短”,或

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。