离散型随机变量及其分布列复习课件.ppt

离散型随机变量及其分布列复习课件.ppt

ID:57226453

大小:2.26 MB

页数:59页

时间:2020-08-04

离散型随机变量及其分布列复习课件.ppt_第1页
离散型随机变量及其分布列复习课件.ppt_第2页
离散型随机变量及其分布列复习课件.ppt_第3页
离散型随机变量及其分布列复习课件.ppt_第4页
离散型随机变量及其分布列复习课件.ppt_第5页
资源描述:

《离散型随机变量及其分布列复习课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第七节离散型随机变量及其分布列1.离散型随机变量随机现象中试验(或观测)的每一个可能的结果都对应于一个数,这种对应称为一个_________,通常用大写的英文字母如X,Y来表示.随机变量的取值能够一一列举出来,这样的随机变量称为________________.随机变量离散型随机变量2.离散型随机变量的分布列及其性质(1)离散型随机变量的分布列设离散型随机变量X的取值为a1,a2,…随机变量X取ai的概率为pi(i=1,2,…),记作:__________(i=1,2,…),①或把上式列成表P(X=ai)=piX=aia1a2…P(

2、X=ai)____…p1p2表或①式称为离散型随机变量X的分布列,记为(2)离散型随机变量分布列的性质①pi__0(i=1,2,…);②p1+p2+…=__.3.超几何分布一般地,设有N件产品,其中有M(M≤N)件次品,从中任取n(n≤N)件产品,用X表示取出的n件产品中次品的件数,那么,P(X=k)=____(其中k为非负整数).如果一个随机变量的分布列由上式确定,则称X服从参数为N,M,n的超几何分布.>1判断下面说法是否正确(请在括号中打“√”或“×”).(1)离散型随机变量的分布列完全描述了由这个随机变量所刻画的随机现象.(

3、)(2)有些离散型随机变量的分布列可以使用公式表示.()(3)离散型随机变量的概率分布列中,各个概率之和可以小于1.()(4)离散型随机变量的各个可能值表示的事件是彼此互斥的.()(5)如果随机变量X的分布列由下表给出,则它服从超几何分布.()X25P0.30.7【解析】(1)正确.离散型随机变量的分布列是所有离散型随机变量的概率分布情况,因此该说法是正确的.(2)错误.有些离散型随机变量的概率可以用公式表示出来,但分布列不能.(3)错误.由概率分布列的性质可知:在分布列中随机变量的概率之和为1.(4)正确.因为如果离散型随机变量的

4、各个可能值表示的事件彼此不互斥,则它们的概率之和将大于1,所以该说法是正确的.(5)错误.因为超几何分布中随机变量X的取值应为连续的非负整数.答案:(1)√(2)×(3)×(4)√(5)×1.将一颗骰子掷两次,随机变量为()(A)第一次出现的点数(B)第二次出现的点数(C)两次出现点数之和(D)两次出现相同点的种数【解析】选C.A,B中出现的点数虽然是随机的,但它们取值所反映的结果,都不是本题涉及试验的结果.D中出现相同点数的种数就是6种,不是变量.C整体反映两次投掷的结果,可以预见两次出现数字的和是2,3,4,5,6,7,8,9,

5、10,11,12,共11种结果,但每掷一次前,无法预见是11种中的哪一个,故是随机变量,选C.2.设随机变量X等可能取值1,2,3,…,n,若P(X<4)=0.3,则()(A)n=3(B)n=4(C)n=9(D)n=10【解析】选D.P(X<4)=P(X=1)+P(X=2)+P(X=3)==0.3,∴n=10.3.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为X,则表示“放回5个红球”事件的是()(A)X=4(B)X=5(C)X=6(D)X≤5【解析】选C.由条

6、件知“放回5个红球”事件对应的X为6.4.设X是一个离散型随机变量,其分布列为:则q等于()(A)1(B)1±(C)1-(D)1+【解析】选C.由分布列的性质得:X-101P0.51-2qq25.甲、乙两队在一次对抗赛的某一轮中有3道抢答题,比赛规定:对于每一道题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分).若X是甲队在该轮比赛获胜时的得分(分数高者胜),则X的所有可能取值是_____.【解析】甲获胜且获得最低分的情况是:甲抢到一道题并回答错误,乙抢到两道题并且都回答错误,此时甲得-1分

7、,故X的所有可能取值为-1,0,1,2,3.答案:-1,0,1,2,3考向1离散型随机变量分布列的性质【典例1】(1)设随机变量X的概率分布如表所示:F(x)=P(X≤x),则当x的取值范围是[1,2)时,F(x)=()(A)(B)(C)(D)(2)已知随机变量X的分布列为求   的分布列.【思路点拨】(1)由概率分布的性质,可求出a的值,然后求出F(x)的值.(2)根据Y与X的对应关系求出Y的值及相应概率.【规范解答】(1)选D.∵,∴a=.∵x∈[1,2),∴F(x)=P(X≤x)=(2)由题意得,所以Y的分布列为【互动探究】在

8、本例题(2)中条件不变,求Y=X2的分布列.【解析】Y=X2对于X的不同取值-2,2及-1,1,Y分别取相同的值4与1,即Y取4这个值的概率应是X取-2与2值的概率的和,Y取1这个值的概率也是X取-1与1值的概率的和,故Y的分布列为【

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。