离散型随机变量及其分布列.ppt

离散型随机变量及其分布列.ppt

ID:48756811

大小:467.00 KB

页数:18页

时间:2020-01-22

离散型随机变量及其分布列.ppt_第1页
离散型随机变量及其分布列.ppt_第2页
离散型随机变量及其分布列.ppt_第3页
离散型随机变量及其分布列.ppt_第4页
离散型随机变量及其分布列.ppt_第5页
资源描述:

《离散型随机变量及其分布列.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、离散型随机变量的分布列(1)高二数学选修2-3一、复习引入:如果随机试验的结果可以用一个变量来表示,(或随着试验结果变化而变化的变量),那么这样的变量叫做随机变量.随机变量常用希腊字母X、Y、ξ、η等表示。1.随机变量2、离散型随机变量所有取值可以一一列出的随机变量,称为离散型随机变量。如果随机变量可能取的值是某个区间的一切值,这样的随机变量叫做连续型随机变量.注3:若是随机变量,则(其中a、b是常数)也是随机变量.注1:随机变量分为离散型随机变量和连续型随机变量。注2:某些随机试验的结果不具备数量性质,但仍可以用数量来表示它。①试验中所有可能出现的基本事件只有有限个;②每个基本事件

2、出现的可能性相等。3、古典概型:引例抛掷一枚骰子,所得的点数X有哪些值?X取每个值的概率是多少?解:则126543⑵求出了 的每一个取值的概率.⑴列出了随机变量 的所有取值.的取值有1、2、3、4、5、6二、离散型随机变量的分布列1、设随机变量 的所有可能的取值为则称表格的每一个取值     的概率为············为随机变量X的概率分布,简称的分布列.注:1、分布列的构成⑴列出了随机变量的所有取值.⑵求出了的每一个取值的概率.2、分布列的性质⑴⑵2.概率分布还经常用图象来表示.O12345678p0.10.21、离散型随机变量的分布列完全描述了由这个随机变量所刻画的随机现象

3、。2、函数可以用解析式、表格或图象表示,离散型随机变量可以用分布列、等式或图象来表示。可以看出的取值范围是{1,2,3,4,5,6},它取每一个值的概率都是。例如:抛掷两枚骰子,点数之和为ξ,则ξ可能取的值有:2,3,4,……,12.ξ的概率分布为:ξ23456789101112p例1:某一射手射击所得环数ξ的分布列如下:ξ45678910P0.020.040.060.090.280.290.22求此射手”射击一次命中环数≥7”的概率.分析:”射击一次命中环数≥7”是指互斥事件”ξ=7”,”ξ=8”,”ξ=9”,”ξ=10”的和.例2.随机变量ξ的分布列为ξ-10123p0.16a/

4、10a2a/50.3(1)求常数a;(2)求P(1<ξ<4)一袋中装有6个同样大小的小球,编号为1、2、3、4、5、6,现从中随机取出3个小球,以 表示取出球的最大号码,求 的分布列.例3:解:表示其中一个球号码等于“3”,另两个都比“3”小∴∴∴∴∴随机变量的分布列为:6543的所有取值为:3、4、5、6.表示其中一个球号码等于“4”,另两个都比“4”小表示其中一个球号码等于“5”,另两个都比“5”小表示其中一个球号码等于“3”,另两个都比“3”小说明:在写出ξ的分布列后,要及时检查所有的概率之和是否为1.课堂练习:2、设随机变量 的分布列为则 的值为.1、下列A、B、C、D四个表

5、,其中能成为随机变量的分布列的是()A01P0.60.3B012P0.90250.0950.0025C012…nP…D012…nP…B课堂练习:3、设随机变量的分布列如下:123…nPK2K4K…K求常数K。4、袋中有7个球,其中3个黑球,4个红球,从袋中任取个3球,求取出的红球数的分布列。例4:已知随机变量 的分布列如下:-2-13210分别求出随机变量⑴;⑵的分布列.解:且相应取值的概率没有变化∴的分布列为:-110⑴由可得的取值为、、0、、1、例4:已知随机变量 的分布列如下:-2-13210分别求出随机变量⑴;⑵的分布列.解:∴的分布列为:⑵由可得的取值为0、1、4、9094

6、1例5、在掷一枚图钉的随机试验中,令如果会尖向上的概率为p,试写出随机变量X的分布列解:根据分布列的性质,针尖向下的概率是(1—p),于是,随机变量X的分布列是:X01P1—pp3、两点分布列象上面这样的分布列称为两点分布列。如果随机变量X的分布列为两点分布列,就称X服从两点分布,而称p=P(X=1)为成功概率。例6、从一批有10个合格品与3个次品的产品中,一件一件的抽取产品,设各个产品被抽到的可能性相同,在下列两种情况下,分别求出取到合格品为止时所需抽取次数的分布列。(1)每次取出的产品都不放回该产品中;(2)每次取出的产品都立即放回该批产品中,然后再取另一产品。变式引申:1、某射

7、手射击目标的概率为0.9,求从开始射击到击中目标所需的射击次数的概率分布。2、数字1,2,3,4任意排成一列,如果数字k恰好在第k个位置上,则称有一个巧合,求巧合数的分布列。思考1.一个口袋里有5只球,编号为1,2,3,4,5,在袋中同时取出3只,以ξ表示取出的3个球中的最小号码,试写出ξ的分布列.思考2.将一枚骰子掷2次,求下列随机变量的概率分布.(1)两次掷出的最大点数ξ;(2)第一次掷出的点数减去第二次掷出的点数之差η.研究性问题设一部机器在一天发生

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。