《离散型随机变量及其分布列》

《离散型随机变量及其分布列》

ID:45558216

大小:1.44 MB

页数:37页

时间:2019-11-14

《离散型随机变量及其分布列》_第1页
《离散型随机变量及其分布列》_第2页
《离散型随机变量及其分布列》_第3页
《离散型随机变量及其分布列》_第4页
《离散型随机变量及其分布列》_第5页
资源描述:

《《离散型随机变量及其分布列》》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、离散型随机变量及其分布列复习回顾引例:(1)抛掷一枚骰子,可能出现的点数有几种情况?(2)姚明罚球2次有可能得到的分数有几种情况?(3)抛掷一枚硬币,可能出现的结果有几种情况?思考:在上述试验开始之前,你能确定结果是哪一种情况吗?1,2,3,4,5,60分,1分,2分正面向上,反面向上能否把掷硬币的结果也用数字来表示呢?分析:不行,虽然我们能够事先知道随机试验可能出现的所有结果,但在一般情况下,试验的结果是随机出现的。在前面的例子中,我们把随机试验的每一个结果都用一个确定的数字来表示,这样试验结果的变化就可看成是这些数字的变化。若

2、把这些数字当做某个变量的取值,则这个变量就叫做随机变量,常用X、Y、x、h来表示。一、随机变量的概念:按照我们的定义,所谓的随机变量,就是随机试验的试验结果与实数之间的一个对应关系。那么,随机变量与函数有类似的地方吗?思考随机变量是试验结果与实数的一种对应关系,而函数是实数与实数的一种对应关系,它们都是一种映射在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值结果相当于函数的值域。所以我们也把随机变量的取值范围叫做随机变量的值域。例1、一个袋中装有5个白球和5个黑球,若从中任取3个,则其中所含白球的个数x就是一个随

3、机变量,求x的取值范围,并说明x的不同取值所表示的事件。解:x的取值范围是{0,1,2,3},其中{x=0}表示的事件是“取出0个白球,3个黑球”;{x=1}表示的事件是“取出1个白球,2个黑球”;{x=2}表示的事件是“取出2个白球,1个黑球”;{x=3}表示的事件是“取出3个白球,0个黑球”;变题:{x<3}在这里又表示什么事件呢?“取出的3个球中,白球不超过2个”写出下列各随机变量可能的取值,并说明它们各自所表示的随机试验的结果:练一练(1)从10张已编号的卡片(从1号到10号)中任取1张,被取出的卡片的号数x;(2)抛掷两

4、个骰子,所得点数之和Y;(3)某城市1天之中发生的火警次数X;(4)某品牌的电灯泡的寿命X;(5)某林场树木最高达30米,最低是0.5米,则此林场任意一棵树木的高度x.(x=1、2、3、···、10)(Y=2、3、···、12)(X=0、1、2、3、···)[0,+∞)[0.5,30]思考:前3个随机变量与最后两个有什么区别?二、随机变量的分类:1、如果可以按一定次序,把随机变量可能取的值一一列出,那么这样的随机变量就叫做离散型随机变量。(如掷骰子的结果,城市每天火警的次数等等)2、若随机变量可以取某个区间内的一切值,那么这样的随

5、机变量叫做连续型随机变量。(如灯泡的寿命,树木的高度等等)注意:(1)随机变量不止两种,我们只研究离散型随机变量;(2)变量离散与否与变量的选取有关;比如:对灯泡的寿命问题,可定义如下离散型随机变量下列试验的结果能否用离散型随机变量表示?(1)已知在从汕头到广州的铁道线上,每隔50米有一个电线铁站,这些电线铁站的编号;(2)任意抽取一瓶某种标有2500ml的饮料,其实际量与规定量之差;(3)某城市1天之内的温度;(4)某车站1小时内旅客流动的人数;(5)连续不断地投篮,第一次投中需要的投篮次数.(6)在优、良、中、及格、不及格5个

6、等级的测试中,某同学可能取得的等级。小练一下练习一:写出下列各随机变量可能的取值:(1)从10张已编号的卡片(从1号到10号)中任取1张,被取出的卡片的号数.(2)一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球数 .(3)抛掷两个骰子,所得点数之和.(4)接连不断地射击,首次命中目标需要的射击次数 .(5)某一自动装置无故障运转的时间 .(6)某林场树木最高达30米,此林场树木的高度 .离散型连续型( =1、2、3、···、10)(   内的一切值)(   内的一切值)( =0、1、2、3)注:随机变量即是随机试验的试

7、验结果和实数之间的一种对应关系.1.将一颗均匀骰子掷两次,不能作为随机变量的是()(A)两次出现的点数之和(B)两次掷出的最大点数(C)第一次减去第二次的点数差(D)抛掷的次数D2.某人去商厦为所在公司购买玻璃水杯若干只,公司要求至少要买50只,但不得超过80只.商厦有优惠规定:一次购买小于或等于50只的不优惠.大于50只的,超出的部分按原价格的7折优惠.已知水杯原来的价格是每只6元.这个人一次购买水杯的只数ξ是一个随机变量,那么他所付款η是否也为一个随机变量呢?ξ、η有什么关系呢?本质是建立了一个从试验结果到实数的对应关系。1.

8、袋中有大小相同的5个小球,分别标有1、2、3、4、5五个号码,现在在有放回的条件下取出两个小球,设两个小球号码之和为 ,则 所有可能值的个数是____个;“   ”表示.“第一次抽1号、第二次抽3号,或者第一次抽3号、第二次抽1号,或者第一次、第二

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。