欢迎来到天天文库
浏览记录
ID:57146547
大小:1.13 MB
页数:17页
时间:2020-08-01
《高二数学选修21 椭圆的标准方程(第2课时) 课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.2.1椭圆及其标准方程(二)焦点在y轴上,中心在原点:焦点在x轴上,中心在原点:椭圆的标准方程:(这两种坐标系下的方程形式,是最简的)12yoFFMx(1)(2)b2=a2—c2cab12yoFFx1oFyx2FM其中F1(-c,0),F2(c,0)其中F1(0,-c),F2(0,c)M知识概括OXYF1F2M(-c,0)(c,0)YXOF1F2M(0,-c)(0,c)椭圆的标准方程的再认识:(1)椭圆标准方程的形式:左边是两个分式的平方和,右边是1(3)椭圆的标准方程中三个参数a、b、c满足a2=b2+c
2、2。(4)由椭圆的标准方程可以求出三个参数a、b、c的值。(2)椭圆的标准方程中,x2与y2的分母哪一个大,则焦点在哪一个轴上。椭圆的定义图形标准方程焦点坐标a,b,c的关系焦点位置的判断F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)看分母的大小,焦点在分母大的那一项对应的坐标轴上.12yoFFMx1oFyx2FM例1cabM练习、求满足下列条件的椭圆的标准方程:(1)两焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P到两焦点距离之和等于10。(2)两焦点的坐标分别是(-2,0)、(2,
3、0),且椭圆经过点P。(1)两焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P到两焦点距离之和等于10。解:因为椭圆的焦点在X轴上,所以可设它的方程为:2a=10,2c=8即a=5,c=4故b2=a2-c2=52-42=9所以椭圆的标准方程为:(2)两焦点的坐标分别是(-2,0)、(2,0),且椭圆经过点P。解:因为椭圆的焦点在X轴上,所以可设它的方程为:由椭圆的定义可知:又因c=2,所以椭圆的标准方程为:故b2=a2-c2=10-22=62答案注:①这样设为一种方法.动画演示例3、如图,在圆
4、 上任取一点P作x轴的垂线段PD,D为垂足。当点P在圆上运动时,线段PD的中点M的轨迹是什么?为什么?解:设点M坐标为M(x,y),点P的坐标为P(x’,y’),则由题意可得:因为所以即这就是点M的轨迹方程,它表示一个椭圆。相关点分析法:即利用中间变量求曲线方程.oxyPMD思考:已知是椭圆的两个焦点,P是椭圆上任一点。(1)若求的面积。(2)求的最大值。
此文档下载收益归作者所有