资源描述:
《高二数学选修2-1_椭圆的标准方程(第1、2课时)_ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.2.1椭圆及其标准方程(二)焦点在y轴上,中心在原点:焦点在x轴上,中心在原点:椭圆的标准方程:(这两种坐标系下的方程形式,是最简的)12yoFFMx(1)(2)b2=a2—c2cab12yoFFx1oFyx2FM其中F1(-c,0),F2(c,0)其中F1(0,-c),F2(0,c)M知识概括F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)看分母的大小,焦点在分母大的那一项对应的坐标轴上.12yoFFMx1oFyx2FM例1cabM2答案注:①这样设不失为一种方法.动画演示例3、如图,在圆
2、 上任取一点P作x轴的垂线段PD,D为垂足。当点P在圆上运动时,线段PD的中点M的轨迹是什么?为什么?解:设点M坐标为M(x,y),点P的坐标为P(x’,y’),则由题意可得:因为所以即这就是点M的轨迹方程,它表示一个椭圆。相关点分析法:即利用中间变量求曲线方程.oxyPMD例5:已知是椭圆的两个焦点,P是椭圆上任一点。(1)若求的面积。(2)求的最大值。2.2.1椭圆及其标准方程天体的运行如何精确地设计、制作、建造出现实生活中这些椭圆形的物件呢?生活中的椭圆一.课题引入:椭圆的画法注意:椭圆定义中容易
3、遗漏的三处地方:(1)必须在平面内;(2)两个定点---两点间距离确定;(常记作2c)(3)绳长---轨迹上任意点到两定点距离和确定.(常记作2a,且2a>2c)1.椭圆定义:平面内与两个定点的距离和等于常数(大于)的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.二.讲授新课:思考:在同样的绳长下,两定点间距离较长,则所画出的椭圆较扁( 线段);两定点间距离较短,则所画出的椭圆较圆( 圆).由此可知,椭圆的形状与两定点间距离、绳长有关.若2a=F1F2轨迹是什么呢?若2a4、2轨迹是什么呢?轨迹是一条线段轨迹不存在♦求动点轨迹方程的一般步骤:(1)建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标;(2)写出适合条件P(M);(3)用坐标表示条件P(M),列出方程;(4)化方程为最简形式;(5)证明以化简后的方程为所求方程(可以省略不写,如有特殊情况,可以适当予以说明)坐标法♦探讨建立平面直角坐标系的方案OxyOxyOxyMF1F2方案一F1F2方案二OxyMOxy2.求椭圆的方程:原则:尽可能使方程的形式简单、运算简单;(一般利用对称轴或已有的互相垂直的线段所在的
5、直线作为坐标轴.)(对称、“简洁”)解:取过焦点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立平面直角坐标系(如图).设M(x,y)是椭圆上任意一点,椭圆的焦距2c(c>0),M与F1和F2的距离的和等于正常数2a(2a>2c),则F1、F2的坐标分别是(c,0)、(c,0).xF1F2M0y(问题:下面怎样化简?)由椭圆的定义得,限制条件:代入坐标两边除以得由椭圆定义可知整理得两边再平方,得移项,再平方叫做椭圆的标准方程。它所表示的椭圆的焦点在x轴上,焦点是,中心在坐标原点的椭圆方程,其中如果
6、椭圆的焦点在y轴上,那么椭圆的标准方程又是怎样的呢?合作探究如果椭圆的焦点在y轴上(选取方式不同,调换x,y轴)如图所示,焦点则变成只要将方程中的调换,即可得.p0xy(0,a)(0,-a)(a222)0ba1ybx2>>=+也是椭圆的标准方程。总体印象:对称、简洁,“像”直线方程的截距式焦点在y轴:焦点在x轴:3.椭圆的标准方程:1oFyx2FM12yoFFMx图形方程焦点F(±c,0)F(0,±c)a,b,c之间的关系c2=a2-b2
7、MF1
8、+
9、MF2
10、=2a(2a>2c>0)定义12yoFFMx1oFy
11、x2FM注:共同点:椭圆的标准方程表示的一定是焦点在坐标轴上,中心在坐标原点的椭圆;方程的左边是平方和,右边是1.不同点:焦点在x轴的椭圆项分母较大.焦点在y轴的椭圆项分母较大.例1:已知一个运油车上的贮油罐横截面的外轮廓线是一个椭圆,它的焦距为2.4m,外轮廓线上的点到两个焦点距离的和为3m,求这个椭圆的标准方程。解:以两焦点 所在直线为X轴,线段 的垂直平分线为y轴,建立平面直角坐标系xOy。则这个椭圆的标准方程为:根据题意:2a=3,2c=2.4,所以:b2=1.52-1.22=0.81因此,这个椭
12、圆的方程为:F1F2xy0M待定系数法练习1.下列方程哪些表示椭圆?若是,则判定其焦点在何轴?并指明,写出焦点坐标.?练习2.求适合下列条件的椭圆的标准方程:(2)焦点为F1(0,-3),F2(0,3),且a=5;(1)a=,b=1,焦点在x轴上;(3)两个焦点分别是F1(-2,0)、F2(2,0),且过P(2,3)点;(4)经过点P(-2,0)和Q(0,-3).小结:求椭圆标准方程的