资源描述:
《高考数学专题复习练习:8_8 立体几何中的向量方法(二)——求空间角和距离.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.两条异面直线所成角的求法设a,b分别是两异面直线l1,l2的方向向量,则l1与l2所成的角θa与b的夹角β范围(0,][0,π]求法cosθ=cosβ=2.直线与平面所成角的求法设直线l的方向向量为a,平面α的法向量为n,直线l与平面α所成的角为θ,a与n的夹角为β,则sinθ=
2、cosβ
3、=.3.求二面角的大小(1)如图①,AB,CD分别是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=〈,〉.(2)如图②③,n1,n2分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ满足
4、cosθ
5、=
6、cos
7、〈n1,n2〉
8、,二面角的平面角大小是向量n1与n2的夹角(或其补角).【知识拓展】利用空间向量求距离(供选用)(1)两点间的距离设点A(x1,y1,z1),点B(x2,y2,z2),则
9、AB
10、=
11、
12、=.(2)点到平面的距离如图所示,已知AB为平面α的一条斜线段,n为平面α的法向量,则B到平面α的距离为
13、
14、=.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)两直线的方向向量所成的角就是两条直线所成的角.( × )(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( × )(3)两个平面的法向量所
15、成的角是这两个平面所成的角.( × )(4)两异面直线夹角的范围是(0,],直线与平面所成角的范围是[0,],二面角的范围是[0,π].( √ )(5)若二面角α-a-β的两个半平面α,β的法向量n1,n2所成角为θ,则二面角α-a-β的大小是π-θ.( × )1.(2017·烟台质检)已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角为( )A.45°B.135°C.45°或135°D.90°答案 C解析 cos〈m,n〉===,即〈m,n〉=45°.∴两平面所成的二面角为45°或180°-4
16、5°=135°.2.已知向量m,n分别是直线l和平面α的方向向量和法向量,若cos〈m,n〉=-,则l与α所成的角为( )A.30°B.60°C.120°D.150°答案 A解析 设l与α所成角为θ,∵cos〈m,n〉=-,∴sinθ=
17、cos〈m,n〉
18、=,∵0°≤θ≤90°,∴θ=30°.故选A.3.(2016·郑州模拟)如图,在空间直角坐标系中有直三棱柱ABC-A1B1C1,CA=CC1=2CB,则直线BC1与直线AB1所成角的余弦值为( )A.B.C.D.答案 A解析 设CA=2,则C(0,0,0),A(2,0,0),
19、B(0,0,1),C1(0,2,0),B1(0,2,1),可得向量=(-2,2,1),=(0,2,-1),由向量的夹角公式得cos〈,〉===,故选A.4.(教材改编)如图,正三棱柱(底面是正三角形的直棱柱)ABC-A1B1C1的底面边长为2,侧棱长为2,则AC1与侧面ABB1A1所成的角为________.答案 解析 以A为原点,以,(AE⊥AB),所在直线为坐标轴(如图)建立空间直角坐标系,设D为A1B1中点,则A(0,0,0),C1(1,,2),D(1,0,2),∴=(1,,2),=(1,0,2).∠C1AD为AC1与平面A
20、BB1A1所成的角,cos∠C1AD===,又∵∠C1AD∈,∴∠C1AD=.5.P是二面角α-AB-β棱上的一点,分别在平面α、β上引射线PM、PN,如果∠BPM=∠BPN=45°,∠MPN=60°,那么二面角α-AB-β的大小为________.答案 90°解析 不妨设PM=a,PN=b,如图,作ME⊥AB于E,NF⊥AB于F,∵∠EPM=∠FPN=45°,∴PE=a,PF=b,∴·=(-)·(-)=·-·-·+·=abcos60°-a×bcos45°-a×bcos45°+a×b=--+=0,∴⊥,∴二面角α-AB-β的大小为
21、90°.题型一 求异面直线所成的角例1 (2015·课标全国Ⅰ)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(1)证明:平面AEC⊥平面AFC;(2)求直线AE与直线CF所成角的余弦值.(1)证明 如图所示,连接BD,设BD∩AC=G,连接EG,FG,EF.在菱形ABCD中,不妨设GB=1.由∠ABC=120°,可得AG=GC=.由BE⊥平面ABCD,AB=BC=2,可知AE=EC.又AE⊥EC,所以EG=,且EG⊥AC.在Rt
22、△EBG中,可得BE=,故DF=.在Rt△FDG中,可得FG=.在直角梯形BDFE中,由BD=2,BE=,DF=,可得EF=,从而EG2+FG2=EF2,所以EG⊥FG.又AC∩FG=G,可得EG⊥平面AFC.因为EG⊂平面AEC,所以平面AEC⊥