资源描述:
《高中数学必修1教案第一章 1_1_2.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.1.2 集合间的基本关系[学习目标] 1.掌握两个集合之间的包含关系和相等关系,并能正确判断.2.了解Venn图的含义,会用Venn图表示两个集合间的关系.3.了解空集的含义及其性质.[知识链接]1.已知任意两个实数a,b,如果满足a≥b,b≥a,则它们的大小关系是a=b.2.若实数x满足x>1,如何在数轴上表示呢?x≥1时呢?3.方程ax2-(a+1)x+1=0的根一定有两个吗?[预习导引]1.Venn图(1)定义:在数学中,经常用平面上封闭曲线的内部代表集合,这种图称为Venn图,这种表示集合的方法叫做图示法.
2、(2)适用范围:元素个数较少的集合.(3)使用方法:把元素写在封闭曲线的内部.2.子集的概念文字语言符号语言图形语言集合A中任意一个元素都是集合B中的元素,就说这两个集合有包含关系,称集合A是集合B的子集A⊆B(或B⊇A)3.集合相等与真子集的概念定义符号表示图形表示集合相等如果A⊆B且B⊆A,就说集合A与B相等A=B真子集如果集合A⊆B,但存在元素x∈B,且x∉A,称集合A是B的真子集AB(或BA)4.空集(1)定义:不含任何元素的集合叫做空集.(2)用符号表示为:∅.(3)规定:空集是任何集合的子集.5.子集的
3、有关性质(1)任何一个集合是它本身的子集,即A⊆A.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么A⊆C.要点一 有限集合的子集确定问题例1 写出集合A={1,2,3}的所有子集和真子集.解 由0个元素构成的子集:∅;由1个元素构成的子集:{1},{2},{3};由2个元素构成的子集:{1,2},{1,3},{2,3};由3个元素构成的子集:{1,2,3}.由此得集合A的所有子集为∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.在上述子集中,除去集合A本身,即{1,2,3},剩下的
4、都是A的真子集.规律方法 1.求解有限集合的子集问题,关键有三点:(1)确定所求集合;(2)合理分类,按照子集所含元素的个数依次写出;(3)注意两个特殊的集合,即空集和集合本身.2.一般地,若集合A中有n个元素,则其子集有2n个,真子集有2n-1个,非空真子集有2n-2个.跟踪演练1 已知集合M满足{2,3}⊆M⊆{1,2,3,4,5},求集合M及其个数.解 当M中含有两个元素时,M为{2,3};当M中含有三个元素时,M为{2,3,1},{2,3,4},{2,3,5};当M中含有四个元素时,M为{2,3,1,4},{2
5、,3,1,5},{2,3,4,5};当M中含有五个元素时,M为{2,3,1,4,5};所以满足条件的集合M为{2,3},{2,3,1},{2,3,4},{2,3,5},{2,3,1,4},{2,3,1,5},{2,3,4,5},{2,3,1,4,5},集合M的个数为8.要点二 集合间关系的判定例2 指出下列各对集合之间的关系:(1)A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};(2)A={x
6、x是等边三角形},B={x
7、x是等腰三角形};(3)A={x
8、-1<x<4},B={x
9、x-
10、5<0};(4)M={x
11、x=2n-1,n∈N*},N={x
12、x=2n+1,n∈N*}.解 (1)集合A的代表元素是数,集合B的代表元素是有序实数对,故A与B之间无包含关系.(2)等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故AB.(3)集合B={x
13、x<5},用数轴表示集合A,B如图所示,由图可知AB.(4)由列举法知M={1,3,5,7,…},N={3,5,7,9,…},故NM.规律方法 对于连续实数组成的集合,通常用数轴来表示,这也属于集合表示的一种图示法.注意在数轴上,若端点值是集合的元素
14、,则用实心点表示;若端点值不是集合的元素,则用空心点表示.跟踪演练2 集合A={x
15、x2+x-6=0},B={x
16、2x+7>0},试判断集合A和B的关系.解 A={-3,2},B=.∵-3>-,2>-,∴-3∈B,2∈B∴A⊆B又0∈B,但0∉A,∴AB.要点三 由集合间的关系求参数范围问题例3 已知集合A={x
17、-3≤x≤4},B={x
18、2m-1<x<m+1},且B⊆A,求实数m的取值范围.解 ∵B⊆A,(1)当B=∅时,m+1≤2m-1,解得m≥2.(2)当B≠∅时,有解得-1≤m<2,综上得{m
19、m≥-1}.规
20、律方法 1.(1)分析集合间的关系时,首先要分析、简化每个集合.(2)利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误.2.涉及字母参数的集合关系时,注意数形结合思想与分类讨论思想的应用.跟踪演练3 已知集合A={x
21、1≤x≤2},B={x
22、1≤x≤a,a≥1}.(1)若AB,求a的取值范围