欢迎来到天天文库
浏览记录
ID:5575671
大小:2.46 MB
页数:56页
时间:2017-12-19
《高中数学必修1教案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、高一数学(必修一)学案普集高中党武军56课题:§1.1集合(一)教学目的:让学生理解集合间的关系。(二)教学重点:集合间的关系及表示方法(三)新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。3.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情
2、况必有一种且只有一种成立。(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。(3)集合相等:构成两个集合的元素完全一样4.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belongto)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(notbelongto)A,记作aA(或aA)(举例)5.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R(二)集合的表示方
3、法(1)列举法:把集合中的元素一一列举出来,写在大括号内。如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。(2)描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。如:{x
4、x-3>2},{(x,y)
5、y=x2+1},{直角三角形},…;二课后作业:三教后反思:56课题:§
6、1.2集合间的基本关系一,教学目的:让学生理解集合间的关系。二,教学重点:集合间的关系及表示方法三,引入课题1、复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0N;(2)Q;(3)-1.5R(一)新课教学(一)集合与集合之间的“包含”关系;A={1,2,3},B={1,2,3,4}集合A是集合B的部分元素构成的集合,我们说集合B包含集合A;如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集(subset)。记作:读作:A包含于(iscontainedi
7、n)B,或B包含(contains)A当集合A不包含于集合B时,记作AB用Venn图表示两个集合间的“包含”关系BA(二)集合与集合之间的“相等”关系;,则中的元素是一样的,因此即练习结论:任何一个集合是它本身的子集(三)真子集的概念若集合,存在元素,则称集合A是集合B的真子集(propersubset)。记作:AB(或BA)读作:A真包含于B(或B真包含A)举例(由学生举例,共同辨析)(四)空集的概念(实例引入空集概念)不含有任何元素的集合称为空集(emptyset),记作:规定:空集是任何集合的子集,是任
8、何非空集合的真子集。56(一)结论:,且,则(二)例题(1)写出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。(2)化简集合A={x
9、x-3>2},B={x
10、x5},并表示A、B的关系;(三)课堂练习(四)归纳小结,强化思想两个集合之间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,同时还要注意区别“属于”与“包含”两种关系及其表示方法;1、书面作业:2、提高作业:已知集合,≥,且满足,求实数的取值范围。设集合,,试用Venn图表示它们之间的关系。教后反思:56课题:§1.3集合的
11、基本运算教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。教学重点:集合的交集与并集、补集的概念;教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;教学过程:一引入课题我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?思考(P9思考题),引入并集概念。二新课教学1.并集一般
12、地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)A∪BABA记作:A∪B读作:“A并B”?即:A∪B={x
13、x∈A,或x∈B}Venn图表示:说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。例题(P9-10例4、例5)说明:连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。问题:在上图中我们除
此文档下载收益归作者所有