椭圆和其标准方程.ppt

椭圆和其标准方程.ppt

ID:57052455

大小:710.00 KB

页数:20页

时间:2020-07-29

椭圆和其标准方程.ppt_第1页
椭圆和其标准方程.ppt_第2页
椭圆和其标准方程.ppt_第3页
椭圆和其标准方程.ppt_第4页
椭圆和其标准方程.ppt_第5页
资源描述:

《椭圆和其标准方程.ppt》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、椭圆及其标准方程北京市京源学校田娟《普通高中课程标准实验教科书-数学选修1-1》(人教B版)2011.07.20说课内容教学过程设计教学方法及手段教学目标及重难点教学背景分析指导思想与理论依据2011.07.20指导思想与理论依据新课程标准理念——高中数学新课程标准指出:“强调本质,注意适度形式化。高中数学课程应该返璞归真,努力揭示数学概念、法则、结论的发展过程和本质,让学生体会蕴涵在其中的思想方法。”建构主义理论——建构主义认为:知识不是通过教师讲授得到的,而是学习者在一定的情境即社会文化背景下,借助其他人(包括

2、教师和学习伙伴)的帮助,充分利用各种学习资源通过意义建构而获得。教学背景分析2011.07.201.教材分析:平面解析几何问题,就是借助建立适当的坐标系,科学合理地把几何问题代数化,运用代数的方法来研究几何问题。在必修2中学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形。在选修1中,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题。教材对这三种圆锥曲线的学习的重点放在了椭圆上,通过求椭圆的标准方程,是学生掌握推导出这一类轨迹方程的一般规律和化简的常用方法。

3、因此,“椭圆及其标准方程”起到了承上启下的重要作用。教学背景分析2011.07.20知识方面(1)初步熟悉了求曲线方程的一般方法和步骤,具备主动探究椭圆知识的基础;(2)学生对椭圆有了一定的认识,但未上升到“概念”的水平。(3)未涉及过含两个字母、两个根式的方程化简问题;自身特征方面(1)我所教授的班级是文科班,他们普遍对数学有一定的畏难情绪,但是他们思维比较活跃,具备了初步的探索能力;(2)对概念的形成过程不重视,所以无法深刻理解;(3)对于较复杂的计算问题,往往不知如何动手或懒得动手,计算能力较弱。但他们同时又

4、乐于小组合作学习,学习气氛浓厚;教学目标及重难点2011.07.20(1)经历从具体情境中抽象出椭圆模型的过程,逐步提高学生的观察、分析、归纳、类比、概括能力;(2)通过椭圆标准方程的推导,进一步掌握求曲线方程的一般方法——坐标法,并渗透数形结合、等价转化的数学思想方法。(1)掌握椭圆的定义;(2)理解椭圆标准方程的推导过程,掌握椭圆标准方程的两种形式,会运用待定系数法求椭圆的标准方程;在动手折纸得出椭圆的定义的学习过程中,培养学生思维的严密性;亲身经历椭圆标准方程的获得过程,感受数学的对称、简洁、和谐美,同时养成

5、扎实严谨的学习习惯,增强学生战胜困难的意志品质和锲而不舍的钻研精神。知识与技能过程与方法情感态度价值观教学目标及重难点2011.07.20椭圆的定义和椭圆标准方程的两种形式椭圆的标准方程的建立和推导重点难点教学方法及手段2011.07.20本节课采用让学生动手实践、自主探究、合作交流及教师启发引导的教学方法,并以多媒体手段辅助教学,使学生经历实践、观察、交流、分析、概括等理性思维的基本过程,切实改进学生的学习方式,使学生真正成为学习的主人。根据本节内容的特点,教学过程中可充分发挥信息技术的作用,用几何画板的动态作图

6、优势为学生的数学探究与数学思维提供支持。教学过程设计2011.07.20椭圆及其标准方程情景引入概念形成概念深化方程推导初步应用目标检测归纳小结布置作业情景引入2011.07.20学生列举生活中椭圆的例子,教师加以补充学生展示成果,教师动画演示折纸过程Subtitle引出课题——椭圆及其标准方程设计意图:通过折纸游戏充分调动学生的学习兴趣,激发学生的探究心理。为引出新知做铺垫。通过举例和展示生活中椭圆形的图片,让学生认识到椭圆和日常生活关系密切。概念形成2011.07.20点A与点F重合,连结OA,交折痕BC于点M

7、,那么点M的轨迹是什么?点M满足什么条件呢?你能否给椭圆下个定义?椭圆的定义这个常数是任意实数吗?有什么限制条件吗?如果常数,常数时,将是什么样的情形?如学生有困难,铺设认知阶梯肯定学生回答的基础上,补充“平面内”学生如遇到障碍,教师适时引导学生合作交流,得到结论设计意图:通过分析动点与定点的关系,使学生经历椭圆概念的生成和完善过程,提高其归纳概括能力,加深对椭圆本质的认识,培养思维的严谨性概念深化2011.07.20两道关于椭圆概念的题目学生初步理解了椭圆的概念,接下去还必须消化、巩固。怎么消化巩固?基于“双基”

8、和学生的认知规律,这里设计了两道比较基础的题目(第1题是自编题,第2道选自课本2.1.1练习B第2题)。理解数学往往不可能一次完成,通过这两道题,学生来“做”数学,在“做”的过程中,认识到对椭圆定义的理解,一要抓住椭圆上的点所满足的条件,二要注意定义中对“常数”的限定,从而进一步加深对椭圆概念的理解。方程推导2011.07.20回顾求圆的方程的一般步骤类比圆

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。