欢迎来到天天文库
浏览记录
ID:57001231
大小:178.50 KB
页数:18页
时间:2020-07-26
《数列求和问题方法总结课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、数列求和问题情境1对于下列数列如何求和?1.求数列项和的前项和2.求数列的前1.公式法(利用等差、等比数列直接求和)满足,当时,若已知对于下列数列如何求和?问题情境22.倒序相加法如果一个数列{an},与首末两项等距的两项之和等于首末两项之和(都相等,为定值),可采用把正着写和与倒着写和的两个和式相加,就得到一个常数列的和,这一求和的方法称为倒序相加法.类型a1+an=a2+an-1=a3+an-2=……1.已知函数求的值.巩固训练求数列项和的前对于下列数列如何求和?问题情境33.乘公比错位相减法如果一个数列的各项是由一个等
2、差数列与一个等比数列对应项乘积组成,此时求和可采用乘公比错位相减法.{an·bn}型等差等比解:⑴当x=0时Sn=0⑵当x=1时Sn=1+2+3+…+n=n(n+1)/2⑶当x≠0且x≠1时Sn=x+2x2+3x3+…+nxn①①-②得:(1-x)Sn=x+x2+x3+…+xn-nxn+1化简得:Sn=x(1-xn)/(1-x)2-nxn+1/(1-x)xSn=x2+2x3+3x4…+(n-1)xn+nxn+1②综合⑴⑵⑶得(略)巩固训练求数列项和的前对于下列数列如何求和?问题情境44.裂项相消法把数列的通项拆成两项之差,即
3、数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前n项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法.(见到分式型的要往这种方法联想)巩固训练4:巩固训练5:已知9·9!+8·8!+┅+1·1!=n·n!=(n+1)!-n!巩固训练6:对于下列数列如何求和?问题情境55.分组求和数列{an}的通项an=2n+2n-1,求该数列的前n项和.有一类数列,既不是等差数列,又不是等比数列,若将这类数列适当拆开,则可分为几个等差、等比或常见的数列,然后分别求和,再将其相加,即可得出原数列的和.巩固训练问题情
4、境66.并项求和1.1-22+32-42+…+(2n-1)2-(2n)2=?对于下列数列如何求和?周期数列先求出一个周期中各项的和,再求有多少个周期,最后求出余下各项的和数列求和的常用方法公式法2.倒序相加法课堂小结3.错位相减法4.裂项相消法等.,,n·n!=5.分组求和法6.并项求和法
此文档下载收益归作者所有