中考尺规作图专题.doc

中考尺规作图专题.doc

ID:56909594

大小:289.50 KB

页数:6页

时间:2020-07-23

中考尺规作图专题.doc_第1页
中考尺规作图专题.doc_第2页
中考尺规作图专题.doc_第3页
中考尺规作图专题.doc_第4页
中考尺规作图专题.doc_第5页
资源描述:

《中考尺规作图专题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、中考专题复习:尺规作图最基本,最常用的尺规作图,通常称基本作图。一些复杂的尺规作图都是由基本作图组成的。五种基本作图:1、作一条线段等于已知线段;2、作一个角等于已知角;3、作已知线段的垂直平分线;4、作已知角的角平分线;5、过一点作已知直线的垂线;专题训练:1.已知:线段a,b求作:△ABC,使AB=a,BC=b,AC=2a.(尺规作图,不写作法,保留作图痕迹)分析:首先画线段AC=2a,再以A为圆心,a长为半径画弧,再以C为圆心,b长为半径画弧,两弧交于点B,连接AB、BC即可.解:如图所示:△ABC即为所求.,点评:此题主要考查了作图,关键是掌握作一条线段等于已知线段的方法.2.如图(1

2、),已知直线AB及直线AB外一点C,过点C作CD∥AB(写出作法,画出图形).分析:根据两直线平行的性质,同位角相等或内错角相等,故作一个角∠ECD=∠EFB即可.作法:如图(2).图(1)图(2)(1)过点C作直线EF,交AB于点F;(2)以点F为圆心,以任意长为半径作弧,交FB于点P,交EF于点Q;(3)以点C为圆心,以FP为半径作弧,交CE于M点;(4)以点M为圆心,以PQ为半径作弧,交前弧于点D;(5)过点D作直线CD,CD就是所求的直线.3.已知:∠AOB,求作:∠A′O′B′=∠AOB(用尺规作图,保留作图痕迹,不写步骤).分析:(1)作射线O′B′;(2)以O为圆心,以任意长为半

3、径画弧,交OA于点C,交OB于点D;(3)以O′为圆心,以OC的长为半径画弧,交O′A′于点C′;(4)以点D′为圆心,以CD的长为半径画弧,交前弧于点C′;(5)过C′作射线O′A′.则∠A′O′B′就是所求作的角.解:∠A′O′B′就是所求作的角.4.画出∠AOB的角平分线(要求:尺规作图,不写作图过程保留作图痕迹).分析:以点O为圆心,以任意长为半径画弧,与边OA、OB分别相交于点M、N,再以点M、N为圆心,以大于1/2MN长为半径,画弧,在∠AOB内部相交于点C,作射线OC即为∠AOB的平分线.解:如图所示,OC即为所求作的∠AOB的平分线.5.尺规作图:线段MN的垂直平分线(不写作法

4、,保留作图痕迹)分析:分别以M、N点为圆心,以大于1/2MN的长为半径作弧,两弧相交于A,B两点;作直线AB,AB即为线段AB的垂直平分线.解:如图所示:AB即为所求.6.经过已知直线外一点作这条直线的垂线“的尺规作图过程:已知:直线l和l外一点P.求作:直线l的垂线,使它经过点P.作法:如图:(1)在直线l上任取两点A、B;(2)分别以点A、B为圆心,AP,BP长为半径画弧,两弧相交于点Q;(3)作直线PQ.参考以上材料作图的方法,解决以下问题:(1)以上材料作图的依据是: 线段垂直平分线上的点到线段两端点的距离相等 7.尺规作图:画一个三角形与△ABC全等,要求用尺规作图,保留作图痕迹.分

5、析:根据全等三角形的判定SSS定理分别作DF=BC,DE=AB,EF=AC即可.解:如图所示:.8.尺规作图:作三角形的外接圆.分析:由于三角形的外心是三角形三边中垂线的交点,可作△ABC的任意两边的垂直平分线,它们的交点即为△ABC的外接圆的圆心(设圆心为O);以O为圆心、OB长为半径作圆,即可得出△ABC的外接圆.解:如图所示:⊙O即为△ABC的外接圆.9.利用尺规作出△ABC的内切圆(不写作法,保留作图痕迹)分析:首先作出三角形的内角平分线进而得出得出内切圆圆心位置,利用圆心到三角形边的距离为半径画圆得出即可.解:如图所示:⊙O即为所求.10.尺规作图,找出圆的圆心,不要求写作法,保留作

6、图痕迹.分析:画出两条弦,分别作出两条弦的垂直平分线,两垂直平分线的交点就是圆心位置.解:如图所示:.11.如图,已知⊙O.用尺规作⊙O的内接正四边形ABCD.(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑.)解:作⊙O的任意一条直径AC.作AC的垂直平分线,与⊙O相交于B,D两点.顺次连接AB,BC,CD,DA得到正四边形ABCD.四边形ABCD就是所要求作的图形.强化练习:1.已知:∠AOB,点M、N.求作:点P,使点P到OA、OB的距离相等,且PM=PN.(要求:用尺规作图,保留作图痕迹,不写作法.)分析:首先作出∠AOB的平分线,作M点关于对角线对称点M',连接M'N

7、,作M'N的垂直平分线,交角平分线的点就是P点.解:作图如右:2.如图,在Rt△ABC中,∠BAC=90°.(1)先作∠ACB的平分线交AB边于点P,再以点P为圆心,PA长为半径作⊙P;(要求:尺规作图,保留作图痕迹,不写作法)(2)请你判断(1)中BC与⊙P的位置关系,并证明你的结论3.如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。