高考数学专题复习:专题二  三角函数、平面向量.pdf

高考数学专题复习:专题二  三角函数、平面向量.pdf

ID:56883004

大小:763.87 KB

页数:22页

时间:2020-07-19

高考数学专题复习:专题二  三角函数、平面向量.pdf_第1页
高考数学专题复习:专题二  三角函数、平面向量.pdf_第2页
高考数学专题复习:专题二  三角函数、平面向量.pdf_第3页
高考数学专题复习:专题二  三角函数、平面向量.pdf_第4页
高考数学专题复习:专题二  三角函数、平面向量.pdf_第5页
资源描述:

《高考数学专题复习:专题二  三角函数、平面向量.pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第一讲 三角函数的图象与性质(选择、填空题型)一、选择题1.若f(cosx)=cos2x,则f(sin15°)=()1133A.B.-   C.-D.222253ππα2.若sin(π-α)=-且α∈π,,则sin+=()3(2)(22)6666A.-B.-C.D.3663π3.(2014·青岛模拟)函数f(x)=Asin(ωx+φ)A>0,ω>0,

2、φ

3、<的部2ππ分图象如图所示,若x1,x2∈-,,且f(x1)=f(x2),则f(x1+x2)=(63)()123A.1B.C.D.222π4.(

4、2014·江西师大附中模拟)为了得到函数y=3sin2x-的图象,6π只需把函数y=3sinx-上的所有的点的()(6)A.横坐标伸长到原来的2倍,纵坐标不变1B.横坐标缩短到原来的倍,纵坐标不变2C.纵坐标伸长到原来的2倍,横坐标不变1D.纵坐标缩短到原来的倍,横坐标不变2ππ5.将函数f(x)=2sinωx-(ω>0)的图象向左平移个单位,得(3)3ωπ到函数y=g(x)的图象.若y=g(x)在0,上为增函数,则ω的最大值[4]为()A.1B.2C.3D.46.(2014·德阳模拟)定义在R上

5、的偶函数f(x)满足f(2-x)=f(x),且在[-3,-2]上是减函数,α,β是钝角三角形的两个锐角,则下列不等式中正确的是()A.f(sinα)>f(cosβ)B.f(sinα)f(cosβ)π7.已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤f

6、(6)

7、π对x∈R恒成立,且ff(10)(5)C.f(x)是奇函数ππD.f(x)

8、的单调递增区间是kπ-,kπ+(k∈Z)[36]8.已知函数f(x)=

9、sinx

10、的图象与直线y=kx(k>0)有且仅有三个公共点,这三个公共点横坐标的最大值为α,则α等于()A.-cosαB.-sinαC.-tanαD.tanαππ19.已知曲线y=2sinx+cos-x与直线y=相交,若在y轴(4)(4)2右侧的交点自左向右依次记为P1,P2,P3,…,则

11、P1P5―→

12、等于()A.πB.2πC.3πD.4ππ10.已知函数f(x)=Asin(ωx+φ),x∈RA>0,ω>0,0<φ<的周期为

13、22πππ,且图象上一个最小值点为M,-2.当x∈0,时,函数f(x)(3)[12]的最大值与最小值的和为()A.1+3B.23C.-1+3D.2二、填空题11.已知复数z=(cosα-sinα)+(tanα)i在复平面内对应的点在第一象限,则在[0,2π]内α的取值范围是________.12.(2014·江苏高考)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),π它们的图象有一个横坐标为的交点,则φ的值是________.313.已知函数f(x)=Asin(ωx+φ)(A>0,ω>

14、0)的图象与直线y=b(00,0<φ<π)为偶函数,其部分图象如图所示,A,B分别为最高点与最低点,并且A,B两点间距离为25,则ω、φ的值分别是________.π15.若函数f(x)=2sin2x++1在区间[a,b](a,b∈R且a

15、拟)已知函数f(x)=cosx·sinx,给出下列五个说法:1921π1①f=;②若f(x1)=-f(x2),则x1=-x2;③f(x)在区间(12)4ππ3π-,上单调递增;④将函数f(x)的图象向右平移个单位可得到y[63]41π=cos2x的图象;⑤f(x)的图象关于点-,0成中心对称.其中正确2(4)说法的序号是________.答案一、选择题31.解析:选Cf(sin15°)=f(cos75°)=cos150°=-cos30°=-.253π2.解析:选Bsin(π-α)=sinα=-,又

16、α∈π,,3(2)52α∴cosα=-1-sin2α=-1--2=-.由cosα=2cos2-1,(3)322απ3παcosα+1-+16πα∈,,cos=-=-3=-,所以sin+=2(24)226(22)2α6cos=-.26Tπππ2π3.解析:选D 由图象可知A=1,=--=,所以=T23(6)2ωππ=π,ω=2,将-,0代入y=sin(2x+φ)得-+φ=kπ(k∈Z),又

17、φ

18、<(6)3πππππ,所以φ=,y=sin2x+,其图象对称轴方程为2x+=+kπ(k∈2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。