欢迎来到天天文库
浏览记录
ID:56882651
大小:143.22 KB
页数:9页
时间:2020-07-19
《人教版高三数学总复习课时作业35.pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课时作业35 数列求和一、选择题1.数列{1+2n-1}的前n项和为()A.1+2nB.2+2nC.n+2n-1D.n+2+2n解析:由题意得a=1+2n-1,n1-2n所以S=n+=n+2n-1,故选C.n1-2答案:C2.设数列{(-1)n}的前n项和为S,则对任意正整数n,S=()nnn[-1n-1]-1n-1+1A.B.22-1n+1-1n-1C.D.22解析:∵数列{(-1)n}是首项与公比均为-1的等比数列,n×-1n-1-1--1-1∴Sn==.1--12答案:D3.已知数列{an}中,a1=1,a2=2+3,a3=4+5+6,a4=7
2、+8+9+10,…,则a10的值为()A.750B.610C.510D.505解析:a10=46+47+…+55=505.答案:D4.数列{an}中,a1,a2-a1,a3-a2,…,an-an-1,…是首项为11,公比为的等比数列,则an等于()33131A.(1-)B.(1-)23n23n-12121C.(1-)D.(1-)33n33n-11解析:由题得a-a=()n-1,所以a=(a-a)+(a-ann-1nnn-1n-1n-311131)+…+(a-a)+a=()n-1+()n-2+…++1=(1-).221133323n答案:A5.已知等差数列{an}的前n项和为Sn,a5=
3、5,S5=15,则数列1的前100项和为(){anan+1}10099A.B.10110199101C.D.100100解析:设等差数列{an}的首项为a1,公差为d.∵a5=5,S5=15,∴Error!∴Error!∴an=a1+(n-1)d=n.1111∴==-,anan+1nn+1nn+11∴数列的前100项和为{anan+1}1111111001-+-+…+-=1-=.223100101101101答案:A6.已知函数f(n)=n2cosnπ,且a=f(n)+f(n+1),则a+a+an123+…+a100=()A.0B.-100C.100D.10200解析:f(n)=n
4、2cosnπ=Error!=(-1)n·n2,由a=f(n)+f(n+1)=(-1)n·n2+(-1)n+1·(n+1)2=(-1)n[n2-(nn+1)2]=(-1)n+1·(2n+1),得a1+a2+a3+…+a100=3+(-5)+7+(-9)+…+199+(-201)=50×(-2)=-100.答案:B二、填空题111137.设Sn=+++…+,若Sn·Sn+1=,则n的值为2612nn+14________.1111111解析:Sn=1-+-+-+…+-22334nn+11n=1-=,n+1n+1nn+1n3∴Sn·Sn+1=·==,解得n=6.n+1n+2n+24答案:
5、63925658.数列,,,,…的前n项和Sn为________.248163191251651解析:∵=1+,=2+,=3+,=4+,…22448816163925651∴Sn=++++…+(n+)248162n1111=(1+2+3+…+n)+(+++…+)222232n11[1-n]nn+122nn+11=+=+1-.2122n1-2nn+11答案:+1-22n4x12109.已知f(x)=,求f+f+…+f=4x+2(11)(11)(11)________.4x41-x解析:因为f(x)+f(1-x)=+4x+241-x+24x44x2=+=+=1.4x+24+
6、2·4x4x+22+4x1102956所以f+f=f+f=…=f+f=1.(11)(11)(11)(11)(11)(11)1210∴f+f+…+f=5.(11)(11)(11)答案:5三、解答题10.(2014·安徽卷)数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*.an(1)证明:数列{}是等差数列;n(2)设b=3n·an,求数列{b}的前n项和S.nnnan+1anan+1an解:(1)由已知可得=+1,即-=1n+1nn+1nana1所以{}是以=1为首项,1为公差的等差数列.n1an(2)由(1)得=1+(n-1)·1=n,所以a=n2,从而b=
7、n·3nnnnS=1×31+2×32+3×33+…+n·3n ①n3S=1×32+2×33+3×34+…+(n-1)·3n+n·3n+1 ②n①-②得:-2S=31+32+33+…+3n-n·3n+1n3×1-3nn+1-31-2n·3=-n·3n+1=1-322n-1·3n+1+3所以Sn=.411.(2014·山东卷)已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.(1)求数列{an}的通项公式;4
此文档下载收益归作者所有