2019_2020学年高中数学第1章计数原理1.3.1二项式定理练习新人教A版选修2_3.doc

2019_2020学年高中数学第1章计数原理1.3.1二项式定理练习新人教A版选修2_3.doc

ID:56874772

大小:2.33 MB

页数:4页

时间:2020-07-17

2019_2020学年高中数学第1章计数原理1.3.1二项式定理练习新人教A版选修2_3.doc_第1页
2019_2020学年高中数学第1章计数原理1.3.1二项式定理练习新人教A版选修2_3.doc_第2页
2019_2020学年高中数学第1章计数原理1.3.1二项式定理练习新人教A版选修2_3.doc_第3页
2019_2020学年高中数学第1章计数原理1.3.1二项式定理练习新人教A版选修2_3.doc_第4页
资源描述:

《2019_2020学年高中数学第1章计数原理1.3.1二项式定理练习新人教A版选修2_3.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1-3-1二项式定理[综合训练·能力提升]一、选择题(每小题5分,共30分)1.在(x-)10的展开式中,含x6的项的系数是A.-27C  B.27C  C.-9C  D.9C解析 含x6的项是T5=Cx6(-)4=9Cx6.答案 D2.在的展开式中常数项是A.-28B.-7C.7D.28解析 Tr+1=C··=(-1)k·C··x8-k,当8-k=0,即k=6时,T7=(-1)6·C·=7.答案 C3.(1+x)6展开式中x2的系数为A.15B.20C.30D.35解析 (1+x)6=1·(1+x)6+·(1+x)6,在(1+x)6二项式展开中x2

2、项的系数为C==15,在·(1+x)6二项式展开中x2项的系数为C=15,所以x2的系数为15+15=30.故选C.答案 C4.化简多项式(2x+1)5-5(2x+1)4+10(2x+1)3-10(2x+1)2+5(2x+1)-1的结果是A.(2x+2)5B.2x5C.(2x-1)5D.32x5解析 原式=[(2x+1)-1]5=(2x)5=32x5.答案 D5.在的展开式中,x的幂指数是整数的项共有A.3项B.4项C.5项D.6项解析 Tk+1=C·x·x-=C·x12-k,则k=0,6,12,18,24时,x4的幂指数为整数.答案 C6.对于二项

3、式(n∈N*),有以下四种判断:①存在n∈N*,展开式中有常数项;②对任意n∈N*,展开式中没有常数项;③对任意n∈N*,展开式中没有x的一次项;④存在n∈N*,展开式中有x的一次项.其中正确的是A.①与③B.②与③C.②与④D.①与④解析 二项式的展开式的通项公式为Tk+1=Cx4k-n,由通项公式可知,当n=4k(k∈N*)和n=4k-1(k∈N*)时,展开式中分别存在常数项和一次项.答案 D二、填空题(每小题5分,共15分)7.已知(1+3x)n的展开式中含有x2项的系数是54,则n=________.解析 Tr+1=C(3x)r=C·3r·x

4、r,令r=2,得C·32=54,得·9=54,整理得n2-n-12=0,解得n=4.答案 48.在的展开式中,中间项是________.解析 由n=6知中间一项是第4项,因T4=C(2x2)3·=C·(-1)3·23·x3,所以T4=-160x3.答案 -160x39.230+3除以7的余数是________.解析 230+3=(23)10+3=810+3=(7+1)10+3=C·710+C·79+…+C·7+C+3=7×(C·79+C·78+…+C)+4,所以230+3除以7的余数为4.答案 4三、解答题(本大题共3小题,共35分)10.(10分)

5、在的展开式中,求:(1)第3项的二项式系数及系数;4(2)含x2的项.解析 (1)第3项的二项式系数为C=15,又T3=C(2)4=24·Cx,所以第3项的系数为24C=240.(2)Tk+1=C(2)6-k=(-1)k26-kCx3-k,令3-k=2,得k=1.所以含x2的项为第2项,且T2=-192x2.答案 (1)15 240 (2)-192x211.(12分)在(1-x2)20的展开式中,如果第4r项和第r+2项的二项式系数相等,(1)求r的值;(2)写出展开式中的第4r项和第r+2项.解析 (1)第4r项和第r+2项的二项式系数分别是C和C

6、,因为C=C,所以4r-1=r+1或4r-1+r+1=20,解得r=4或r=.所以r=4.(2)T4r=T16=C·(-x2)15=-15504x30,Tr+2=T6=C(-x2)5=-15504x10.答案 (1)4 (2)-15504x30 -15504x1012.(13分)已知在的展开式中,第6项为常数项.(1)求n;(2)求展开式中所有的有理项.解析 通项公式为Tk+1=Cx(-3)kx-=C(-3)kx.(1)∵第6项为常数项,∴k=5时,有=0,即n=10.(2)根据通项公式,由题意得令=r(r∈Z),则10-2k=3r,即k=5-r.∵

7、k∈Z,∴r应为偶数.4于是r可取2,0,-2,即k可取2,5,8.故第3项,第6项与第9项为有理项,它们分别为C(-3)2x2,C(-3)5,C(-3)8x-2.答案 (1)10(2)C(-3)2x2,C(-3)5,C(-3)8x-24

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。