欢迎来到天天文库
浏览记录
ID:56768039
大小:708.50 KB
页数:18页
时间:2020-07-08
《集安市一中2018-2019学年上学期高二数学12月月考试题含解析.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、集安市一中2018-2019学年上学期高二数学12月月考试题含解析班级__________座号_____姓名__________分数__________一、选择题1.已知函数f(x)满足:x≥4,则f(x)=;当x<4时f(x)=f(x+1),则f(2+log23)=()A.B.C.D.2.平面α与平面β平行的条件可以是()A.α内有无穷多条直线与β平行B.直线a∥α,a∥βC.直线a⊂α,直线b⊂β,且a∥β,b∥αD.α内的任何直线都与β平行3.函数f(x)=1﹣xlnx的零点所在区间是()A.(0,)B.(,1)C.(1,2)D.(2,3) 4.直线x+y﹣1=0与2x+2y+3
2、=0的距离是()A.B.C.D.5.将n2个正整数1、2、3、…、n2(n≥2)任意排成n行n列的数表.对于某一个数表,计算某行或某列中的任意两个数a、b(a>b)的比值,称这些比值中的最小值为这个数表的“特征值”.当n=2时,数表的所有可能的“特征值”的最大值为()A.B.C.2D.3 6.在中,角,,的对边分别是,,,为边上的高,,若,则到边的距离为()A.2B.3C.1D.47.如图,在正六边形ABCDEF中,点O为其中心,则下列判断错误的是()A.=B.∥C.D.8.下列说法中正确的是()A.三点确定一个平面B.两条直线确定一个平面C.两两相交的三条直线一定在同一平面内D.过同
3、一点的三条直线不一定在同一平面内9.在长方体ABCD﹣A1B1C1D1中,底面是边长为2的正方形,高为4,则点A1到截面AB1D1的距离是()A.B.C.D.10.设k=1,2,3,4,5,则(x+2)5的展开式中xk的系数不可能是()A.10B.40C.50D.8011.函数是指数函数,则的值是()A.4B.1或3C.3D.112.下列各组表示同一函数的是()A.y=与y=()2B.y=lgx2与y=2lgxC.y=1+与y=1+D.y=x2﹣1(x∈R)与y=x2﹣1(x∈N) 二、填空题13.已知过双曲线的右焦点的直线交双曲线于两点,连结,若,且,则双曲线的离心率为()A.B.C
4、.D.【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想.14.已知函数在处取得极小值10,则的值为▲.15.过原点的直线l与函数y=的图象交于B,C两点,A为抛物线x2=﹣8y的焦点,则
5、+
6、= . 16.已知等比数列{an}是递增数列,Sn是{an}的前n项和.若a1,a3是方程x2﹣5x+4=0的两个根,则S6= .17.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数,其中为自然对数的底数,则不等式的解集为________.18.已知函数f(x)=sinx﹣cosx,则=
7、 . 三、解答题19.(本小题满分12分)如图,在四棱锥中,底面为菱形,分别是棱的中点,且平面.(1)求证:平面;(2)求证:平面平面.20.如图,摩天轮的半径OA为50m,它的最低点A距地面的高度忽略不计.地面上有一长度为240m的景观带MN,它与摩天轮在同一竖直平面内,且AM=60m.点P从最低点A处按逆时针方向转动到最高点B处,记∠AOP=θ,θ∈(0,π).(1)当θ=时,求点P距地面的高度PQ;(2)试确定θ的值,使得∠MPN取得最大值.21.(本小题满分10分)选修41:几何证明选讲.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于E,过E的切线与AC交于D.(1)
8、求证:CD=DA;(2)若CE=1,AB=,求DE的长.22.已知函数.(1)当函数在点处的切线方程为,求函数的解析式;(2)在(1)的条件下,若是函数的零点,且,求的值;(3)当时,函数有两个零点,且,求证:.23.已知A、B、C为△ABC的三个内角,他们的对边分别为a、b、c,且.(1)求A;(2)若,求bc的值,并求△ABC的面积.24.如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M,N均在直线x=5上,圆弧C1的圆心是坐标原点O,半径为13;圆弧C2过点A(29,0).(1)求圆弧C2的方程;(2)曲线C上是否存在点P,满足?若存在,指出有几
9、个这样的点;若不存在,请说明理由. 集安市一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:∵3<2+log23<4,所以f(2+log23)=f(3+log23)且3+log23>4∴f(2+log23)=f(3+log23)=故选A. 2.【答案】D【解析】解:当α内有无穷多条直线与β平行时,a与β可能平行,也可能相交,故不选A.当直线a∥α,a∥β时,a与β可能平行,也可能相交,故
此文档下载收益归作者所有